

SOFTWARE ENGINEERING LABORATORY SERIES SEL-90-005

COLLECTED SOFTWARE
ENGINEERING PAPERS: VOLUME VIl

NOVEMBER 1990

NNS

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion/Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has

three primary organizational members:
NASA/GSFC (Systems Development Branch)
The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Systems Development
Operation)

The goals of the SEL are (1) to understand the software
development process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply suc-
cessful development practices. The activities, findings,
and recommendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing series of reports
that includes this document. The papers contained in this
document appeared previously as indicated in each section.
Single copies of this document can be obtained by writing to

Systems Development Branch

Code 552

NASA/GSFC
Greenbelt, Maryland 20771

iii
6109

PRECEDING PAGE BLANK NOT FILMEL

AGE_ N\ INTENGIONALLY sANK

TABLE OF NTENT

Section 1 - Introduction . . . « .« « ¢ ¢ « o o o o
Section 2 - Software Measurement Studies.
"Design Measurement: Some Lessons
Learned,” H. Rombach + +«+ « « « « .+ .
Section 3 - Software Models Studies

Towards a Comprehensive Framework for Reuse:

Model-Based Reuse Characterization Schemes,

V. Basili and H. Rombach « « « . =

*Viewing Maintenance as Reuse-Oriented
Software Development,” V. Basili

ion 4 - ftware Tool ies. « « .+ .

"Evolution Towards Specifications Environment:
Experiences With Syntax Editors," M. Zelkowitz

Section 5 - Ada Technology Studies.

*On Designing Parametrized Systems Using
Ada," M., Stark < . .+ . & .

“pyUC: A Functional Specification Language for
Ada," P. Straub and M. Zelkowitz . . . e e

"Software Reclamation: Improving Post-
Development Reusability,"” J. Balley and
V. Basili. . . . « « .« « « . e e e s e

n Bibli h EL Li

6109 .

eact_\V__nrentionawy sk PRECEDING PAGE BLANK NOT FILMED

i

il Y

ECTION 1 - INTROD ION

This document is a collection of selected technical papers
produced by participants in the Software Engineering
Laboratory (SEL) during the period November 1989, through
October 1990. The purpose of the document is to make
available, in one reference, some results of SEL research
that originally appeared in a number of different forums.
This is the eighth such volume of technical papers produced
by the SEL. Although these papers cover several topics
related to software engineering, they do not encompass the
entire scope of SEL activities and interests. Additional
information about the SEL and its research efforts may be
obtained from the sources listed in the bibliography at the

end of this document.

For the convenience of this presentation, the seven papers
contained here are grouped into four major categories:

Software Measurement Studies
Software Models Studies
Software Tools Studies

Ada Technology Studies

The first category presents experimental research and
evaluation of software measurement; the second category
presents studies on models for software reuse; the third
category presents a software tool evaluation; the last
category represents Ada technology and includes studies in

the areas of reuse and specifications.

The SEL is actively working to understand and improve the
software development process at Goddard Space Flight Center
(GSFC). Future efforts will be documented in additional
volumes of the Collected Software Engineering Papers and

other SEL publications.

6109

SECTION 2-SOFTWARE MEASUREMENT
STUDIES

ECTION 2 - FTWARE MEA NT IE

The technical paper included in this section was originally

prepared as indicated below.

® "Design Measurement: Some Lessons Learned, "
H. Rombach, IEEE Software, March 1990

6109

Design Measurement:
Some Lessons Learned

Most software
measurements are
derived from source
code. A promising
addition to the field is
design measurement,
which applles
measurement
principles to front-end
products and
processes.

March 1980

H. Dieter Rombach, University of Maryland at College Park

easurement is becoming recog-

nized as a useful way to soundly

plan and conwol the execution
of software projects. However, current
measurement practices are deficient in
four ways:

* They emphasize the back end of devel-
opment, mainly the coding and testing
phases;

* they are biased toward software prod-
ucts, as opposed to processes;

* they are based on unsound measure-
ment methodologies; and

e they are not integrated with develo,
ment acdvides. e

In short, most software measurements
are derived solely from source code. De
sign measurement — as Figure 1 illus
trates — is the application of measure-
ment to design processes (the word [use to
refer to all kinds of activities) and/or the
resulting design produas (the word I use to
refer to all kinds of documents).

Design measurement isa desirable addi-

0740-74359/90/40300/0017/501.00 © 1990 [EEE

don to traditional code-based measures
because it lets you capture important as-
pects of the product and the process ear-
lierin the life cycle so you can take correc-
tve actions carlier. In turn, this benefit
leads 10 a potendally high payoff, since we
know that errors are more cosuy if com-
mitted early in the life cycle and not
caught undl much later. ’

In this article, [extract from several
measurement projects some of the impor-
ant lessons [have learned about mea-
surement in general and design measure-
ment in partcular. I have synthesized
these lessons into a design-measurement-
framework in an attempt 1o communicate
my personal measurement experience 1o
other software engineers.

My general measurement experience
was gained on the Distos/Incas’ projectat
the University of Kaiserslautern, West
Germany; several projects at the Nadonal
Aeronaudcs and Space Adminisuation’s
Software Engineering Laboratorv at the

17

6109

Design
(and other
front-end phases)

Lile-cycle phases

impilementation
and
testing

e e - ¢ PrOdUCTS/doCUments ine»-v Procassas/methods/toois -
Life-cycie abjects measured

Key.

7 Current emphasis of measurement
53 Proposed aadition to measurement

Figure 1. The scope of measurement.

Goddard Space Flight Center in Green-
belt, Md.; and the Tailoring 2 Measure-
ment Environment project at the Univer-
sity of Maryland.

My design-measurement experience
was gained on the Distos/Incas project,
which measured intercomponent de-
pendencies to predict future maince-
nance behavior; a study at the University
of Maryland that compared the effect of
various design methods; and various stud-
ies at the Software Engineering Laborz-
tory to develop quantitative design base-
lines.

Measurement

From each of these projects, I learned
impormant lessons about “effective” soft-
ware measurement. These lessons tended
to fall in dhree areas:

« how measurement must be appiied in
individual experiments or case studies,

* how measurement can help contnu-
ously improve an organization’s sate of
the practice, and

* why measurement requires automated

support.

Experiments and case studies. As partof
the Distos/Incas project on dismibuted
svstems, my colleagues and I developed
the objectoriented language Ladv.' One
objective of this language was to improve
the mainainability of the distributed soft-
ware written in it. The funding agency. the
German Minisery for Research and Tech-
noiogy, requested empirical evidence of
whether (and to what degree) this objec-

18

6109

tive had been met To find out, we con-
ducted a large, conaolled experiment in
which we developed 12 systerms, six in
Lady and six in a gadidonal procedural
language. We then studied their conse
quent maintenance.’

This experimenc has taught us seven les-
sons:

» There are many types of measurement
goals. Measurementgoais can differ in the
type of object the measurement focuses
on, in their intended effect on the object,
and in the people interested in them. A
measurement goal may focus on object
types such as processes, products, lan-
guages, methods, and tols. Its intended
effect is either passive (when you want to
undersaand the object) or actve (when
you want o predict, control, and improve
the object). The people interested range
from language and tool developers to
customers and users.

In the Distos/ Incas experiment, we had
two main goals. First, we wanted to deter-
mine and explain differences in the main-
tenance behavior of systems implemented
in Lady and those implemented in the -
ditional language. Second, we wanted to
predict the maintenance behavior of Lady
systemns based on soquctural complexitv.

The first goal focused on the languages
used; its intended effect was passive be-
cause it was meant to help us undersand
Lady's effect on maintainabilicy; and it re-
flected the interest of the language de-
signers. The second goal focused on the
product and maintenance process: its in-
tended effect was active because it was

meant w0 help us guide and congol the
appropriate use of Lady to build main-
ainable systems; and itreflected the inter-
est of the managers and developers plan-
ning to use Lady.

* Models and measures are inseparable.
Measures are intended to characterize
some aspect of a software object in quand-
tative terms, but different modeis of the
same aspect are possible. Without an ex-
plicit specification of the chosen model, it
is impossible to judge the appropriateness
of the quandrative measures seiected.

In the Distos/Incas experiment, the
mainainability model was based on the
cost required to perform a change during
maintenance and the effect of the change
on the maintained product. With this
model, measures like “effortin seaff hours
to perform a change” and “number of
modules affected by a change” were jusd-
fied. To predict maintenance behavior
based on swuctural complexity, we chose
Sallie Henry and Dennis Kafura's model
for information flow between compo-
nents.? In this model, measures such as
*number of incoming informadon flows
per module " and “number of outgoing in-
formadon flows per module” were jusd-
fied.

* You need different types of measures.
We learned that you need both aéstraa
and spedfic measures, process and product
measures, directand indiret measures, and
objectiveand subjective measures.

Most measures reported in the litera-
ture are based on some abswact modei
(for example, control-flow measures
based on absaract program graphs). Such
abstract measures must be tailored to the
specific characteristics of the object 0 be
measured (for example, Ada conaol-flow
measures must be based on Ada’s specific
control-flow features).

Product measures (such as design com-
plexity) are noc sufficient (o support ac-
tive measurement goals. Planned im-
provement of quality and productivicy is
only possible through measurably im-
proved (such as fewer design errons) de-
velopment processes.

Direct measures are intended to quan-
ufv some quality aspect (the number of
staff hours spent on design isa directmea-
sure of design cost. for exampie); indirect
measures of some quality aspect are in-

|EEE Software

CHaINAL PAGE IS
o EDON QUALITY

tended to predict this quality based on
other informaton thatcan be derived car-
lier (for example, the number of product
requirements may be an indirect measure
t0 predict the number of saff hours you
expect to be spent on design).

Objective measures (such as lines of
code) are defined well enough so that wo
peopie should compute the identical
value from the same object indepen-
dentdy. Subjective measures (such as swaaff
experience) are computed based on a
subjective estimation or a compromise
among a group of people. Objective mea-
sures arc easicr to automate than subjec-
dve measures. .

In the Distos/Incas experiment, the
measure “number of incoming informa-
don flows per moduie” is an abstract mea-
sure. To coilect this measure, we had 10
determine how “incoming informaton
flow” could be measured from programs
implemented in Lady. The maintenance-
effort measures are process measures; the
strucral-compiexity measures are prod-
uct measures. The maintenance-effort
measures are direct measures of cost; the
squcturacomplexity measures are direct
measures of product compiexity and indi-
rect measures of maintenance cost and ef-
fect — they do not direcdy characterize
maintenance cost and effect buc are ex-
pected o help predict them.

¢ Measurement-based analysis results
are only as good as the data they are based
on. It is important to recognize the limits
of interpreting measures depending on
their scale (that is, nominal, ordinal, in-
terval, or ratio) and the validity of the un-
derlying data. Validating datwa is a very
ume-consuming and often underesu-
mated task. However, the sensitive ask of
interpreting dac becomes guesswork if
you Iry to use inappropriate interpreta-
dons or fail to consider the validity of the
underlying daaa.

In the Distos/Incas experiment, we
used the complexity measures only as or-
dinal measures because we feit that they
could predict that 2 more complex Lady
system would require more effort per
maintenance change, but not how much
more. About haif my time on the Dis
tos/Incas experiment was spent on daa
validadon.

¢ You need a sound experimental ap-

March 1980

6109

proach. A measurement-based experi-
ment requires extensive planning, te-
dious da collection and validation, and
careful interpretation of the collected
dara. As in other experimental discplines,
you need a formal approach to experi-
menation.

In the Distos/Incas experiment, we for-
mulated an approach for the experimen-
wal validadon of strucrural-complexity
measures. Our approach has six steps:

1. Model the quality of interest (main-
ainability, in this case) and quantify itinto
direct measures.

2. Model the product complexity in a
way that lets you identfy all the aspects
that may affect the quality of interest.

A measurement-based
experiment requires
extensive pilanning,
tedious data collection
and validation, and
careful interpretation.

3. Explicitly state your hypotheses
about the effect of product complexity on
the quality of interest.

4. Planand performan appropriate ex-
periment or case study, including the col-
lection and validadon of the prescribed
daca.

5. Analyze the dama and validate the
hypotheses. '

6. Assess the just-completed experi-
mental validation and, if necessary, pre-
pare for funire experimenual validadons
by refining the quality and product-com-
plexity models, your hypotheses, the ex-
periment iwself, and the procedures used
for dara collection, validadon, and anaiy-
sis. [n away, this step is a built-in validation
and improvement of the experimental
validaton iself

* You must report specific measurement
resulits in context. It is not useful to report
measurement results from an experiment
or case sudy without carefuily characteriz-
ing the smdy's context. The way you pre-
sent your results should puc the reader in
a position to repeat the experiment or

case study. Only then can the reader agree
or disagree with your condlusions. Itis not
only useless to present results out of con-
text, it is also dangerous, because it may
lead to inappropriate perceptions.

1 have published some of the results of
the Distos/Incas experiment together
with the necessary context informadon.?
The results suggest that Lady programs
are more mainainable than tadidonal-
language programs and that structural
complexity is a useful predictor for a
component's maintainabiliry.

The advantage of providing the experi-
mental context is that readers can agree
or disagree with the experimenual ap-
proach chosen. For readers who disagree
with the approach, the results have no
vaiue; for readers who agree with the ap-
proach, the results may confirm or add to
their current undersanding. In the Dis-
tos/Incas experiment, we found that
structural complexity cannot be com-
pared across language boundaries based
on the suggested language-specific com-
plexity measures. However, the proposed
abstract complexity measures seem ap-
propriate.

* You must assess each experimenal val-
idadon iwself It is important to transfer
knowledge gained from one experiment
to the next. This letsyou sate beuer goals,
use better measures, and interpret the re-
sults in a broader context.

[n the Distos/ Incas experiment, this as-
sessment was explicidy integrated, as step
6, into our experimental approach. As a
consequence of this posunoriem assess-
ment, we posed many new quesdons,
some of which led to the follow-up experi-
ments [outline later.

Continuous improvement. At the Uni-
versity of Maryland, we have deveioped a
general measurement approach called
the goal/question/metric paradigm.*
The GQM paradigm is broader in scope
and formulated in more operational
terms than the specific experimental ap-
proach applied in the Distos/Incas exper-
iment. However, both agree on two major
measurement princpies: First, measure-
ment must be top-down — measurement
goals define what measures should be col-
lected. Second, the dam interprewation
must ke place in the context of some

19

goal and hypothesis.

The GQM paradigm has four steps:

1. Stte measurement goals in opera-
tional terms. You do this step using tem-
plates, which help you formulate goais
and refine them into quesdons and mea-

SUKCS. i1 /i et bovsid i ngamnk oo be 0o mneur€a e o1t

2. Plan measurement procedures to
support the collection and validadon of
data needed to compute the measures
prescribed in step 1.

3. Collectand validate data.

4. Analyze and interpret the collected
dag and measures in the context of the
questionsand goals sated in step 1.

We have expanded the GQM paradigm
into the quality-improvement paradigm.
which aims to facilitate continuous im-
provement of an organization’s software-
engineering practices.’ The quality-im-
provement paradigm embodies three
basic measurement principies: First, mea-
surement must be applied continuously
to all projects in an organizadon. Second.
measurement must be an integrak part of
cach project — “development” must in-
clude both software construction and mea-
surement. Third, the experience gained
from each project must be recorded in 2
measu-ement database and be made
available to future projects.

The quality-improvement paradigm has
six steps:

|. Characterize the project environ-
ment.

2. Sate improvement goals in operz
tional terms. Again, this is done through
templates that help you formulate goals
and refine them int quesdons and mea-
sures.

3. Plan the project (by selecting appro-
priate methods and tools) and the mea-
surement procedures (o support the coi-
lection and validation of data prescribed
in step 2.

4. Perform the projectand the datacol-
lection and validadon.

5. Analyze and interpret the collected
daa in the context of the questions and
improvementgoals saated in step 2.

6. Return to step | armed with the ex-
perience gained from this project.

Applying the quality-improvement par-
adigm at NASA's Software Engineering
Laboratory has led to a broad body of
measurement experience.*® At the SEL.

20

6109

the quality-improvement paradigm is now
an integral part of development (and just
recendy maintenance) activides to iden-
tify the quality goals of interest, use s@an-
dard measurement procedures to collect
the necessary data from ongoing produc-
tion projects, validate and interpret the
data, and maintain a corporate measure-
ment daabase.

The Goddard Space Flight Center has
benefited from this measurement-based
improvement approach in many ways,
ranging from a better undersanding of
the weaknesses and strengths of its envi-
ronment, o better planning, to the devel-
opment of 2 new standard set of develop-
ment methods and tools, to higher

Introducing
measurement to improve

productivity and the producton of higher
quality software.

My own active invoivernent in the SEL
has helped me better understand several
issues related to the inoroducton of mea-
surement into a production environment:
. = Introducing measurement has far-
reaching consequences. [ntroducing
Mmeasurement to improve an organ-
izadon’s development practices requires
fundamenuaal changes of the organizagon.
It does not just add dam coilection to the
existing development activities — it ready
changes the existing development activi-
ties by making them more wransparent

In addition, the effective incorporation
of measurement into an organization re-
quires changes in the reward sgucture 3o
it is consistent with the goals motivated by
measurement and so the additonal ef-
forts spent on dat collection and valida-
tion are rewarded. All in all. measurement
can reveal the advanages and disadvan-
tages of current practices and spur
changes. Inappropriate measures can be

countereffective because they may cause

the wrongchanges.
At the SEL. each project member fills

- out a daca-collection form every ime he

makes a change — to capture the narure,
cost, and effect of that change — and
weekly — to capture the effort spent on
activides and products. Filling out these
forms has become as routine as writing
code. Special measurement employees
validate the collected forms, maintain the
measurement database, and produce pe-
riodical reports.

* You must jusdfy the cost of measure-
ment. Measurement costsl The cost is ac-
ceptable if it is justfied by the expected
quality and productivity improvements.
Measurement isseif can be used to quan-
tify the improvement potendal by captur-
ing the amount of rework, for example.
The GQM paradigm itseif helps you build
the case that invesanent in capruring cer-
tain measures may pay off by tying them to
an organization’s obvious improvement
needs.

At the SEL, each project spends, on aw-
erage, 3 percenc of its budget on daw col-
lection and validadon. The organizadon
spends an additional 4 to § percent on off-
line data processing and analysis. How-
ever, you should expect a higher invest-
ment up front to build a new program.

* We must address both technology-
uansfer and research issues. The technol-
ogy to esablish an improvement program
exists, as the SEL and other organizations
have shown. Using the available technoi-
ogy is mainly a technology-aansfer prob-
lem.

However, there are important areas that
need more research. These areas include
the formalization of measurement pian-
ning, support for daca interpretation, sup-
port for learning based on measurement
resuits and reusing what has been learned
across projects and environments, and
the appropriate automated support for all
these actvites, especially the appropriate
organizagon of corporate measurement
dabases.

One of the largest corporate measure-
ment databases exists at the SEL. Built
over the last 12 years, itincludes measure-
ment daca on product characteristcs (size
and complexity), process characteristucs
(etfort. changes, and defects), the effec-

|EEE Software

tveness of methodologies (what types of
faults were casily detected using method
X), and project characterisdcs (methods
and tools used, and personnel experi-
ence).® At first, measurement covered
only the development stages, but mainte-
nance has recently been added.’

Automated support. Much research re-
mains to be done to properly integrate
measurement into software development
and maintenance and to provide auto-
mated support in the form of software-en-
gineering environments.

In the Tailoring 2 Measurement Envi-
ronment project at the University of Mary-
land, we address all these measurement-
related issues in the context of the
framework provided by the quality-im-
provement paradigm.* We oy to formai-
ize models and we support characterizing
corporate environmenss, planning con-
struction and measurement activites, cok
lecting, validatdng, and anaiyzing data,
and learning from the measurement re-
sults to do a berzer job in the next project
We are developing a series of TAME pro-
totypes based on an architecture that sup-
porws all these activities.

From the TAME project, we have
learned thac

¢ You need automated support. The
amount of information accumulated in
an organization that applies a measure-
ment-based improvernent approach can-
not be handled manually. Also, without
automated support, results cannot be
made available to interested people in
real time so they can be used to support
project decisions.

In esablishing the SEL program. we ini-
tally collected data without database sup-
port. After about six months of collecing
maintenance data from only two projects,
we depended on database support to
mainain control of the daw-collection
process.

It wakes more than just tools to support
the automated coliecuon of product daa.
We also need automated support that
spans the entre set of measurement activw
ities suggested by the quality<mprove-
ment paradigm. In the TAME project, we
are developing tool support for the for-
mulation of goals, the derivation of mea-
sures, the interpretaton of daw. the re-

March 1880

6109

portng of measurement results, and the
maintenance of an experience base.

* You must integrate construction and
measurement support. Measurement
processes must be wilored o the con-
struction processes they are to measure.
The construction processes. on the other
hand, musz be designed to be measurable
to the degree necessary.

Often, measurement is expected to an-
swer questions about the construction
process that cannot be answered based on
the way construction is performed. Very
often, the reason for such inconsistencies
is that there exists no expiicit agreement
on how constructdon is or should be per-
formed.

1 distinguish between
two design steps:
architectural, or
highrievel, design and
algorithmic, or low-level,
design.

It is very hard to ailor measurement to
heuristic consgructon processes. To ad-
dress this problem, we are developing a
language that lets us model any develop-
ment process explicitly and instrument
that process for measurement” The ex-
plicit specificadon of some consuuction
process may help clarify what the limita-
tions for measuring itare and whether the
need for additional measurements is ur-
gent enough to consider changing the
construction process to make it more

[distinguish between two design steps:
architectural, or high-level, design and ai-
gorithmic, or low-ievel, design. Architec-
tural design involves identfying software
components and their interconnection;
algorithmic design involves identifying
daw structures and the control flow
within the architectural components.

Most design measurement reported in
the literature measures product complex-

ity at the end of the algorithmic design
phase from program-design-language
documents. Many of these measures
(such as Tom McCabe's cyclomatic<com-
plexity measure) capmre product aspects
equally weil from program-design-ian-
guage documents and source code. so itis
not surprising that the results derived
through these design measures do notdif-
fer from results derived through corre-
sponding source-code measures.

In this article, [use the term “design
measure” to refer to architectural design
measures. [n this context, the measure-
ment of designs is more complicated be-
cause rypically less informadon is docu-
mented in a formal, measurabie way at
this early sage.

When you try to measure software de-
signs. you realize that the potential for
measurement is limited by the measur-
abiliry of the design documents. There is
very often a discrepancy between the
need for measuring a design aspect (such
as number of separate design decisions)
and its measurability or lack thereof
(many design decisions are documented
veryinformally ornotaz all).

Therefore, design measurement, more
so than code measurement, can not oniy
caparre design aspects quantitatively, but
it can also drive the development and use
of more formal, better measurable design
approaches. The same argument can be
made in the case of design processes,
which are wypically heuristic rather than
formally specified.

Design characterization. We need a way
w0 characterize software designs based on
architectural design measures. In the Dis-
tos/Incas experiment, we developed de-
sign measures accidenally when we oied
1o compare the structural compiexity of
products impiemented in languages
based on different swuctural concepws. To
do so, we had to resort to comparisons at
some abstract level.

We defined an abstract modei that was
general enough to be instandated into the
precise models underlying each lan-
guage. In that regard. the absuract struc-
tural model represented the greatest com-
mon denominator between the different
language-specific structural concepts (I
have described the abstract modet’s in-

21

standations elsewhere®).

We then realized thac the abstract
model couid aiso be insaandated o mea-
sure intercomponent complexity during
design — completely for coilection at the
end of algorithmic design, pardally at the
end of architecrural design.

From this experience, we have learned:

* Specific measures derived from the
same absiract model can easily be com-
pared across lifecycle phases. Abstract
models and measures let you insandate
compatible measures to wace some de-
sign aspect across several lifecycie phases.
Compatible measures help idendfy the
life<cycle phases in which the aspect of in-
terest (in our case, sructural complexity)
is predominantly addressed.

In the Distos/Incas experiment, we
measured and traced soructural complex-
ity through several consecutve lifecycle
phases — from architectural design
through coding. It became obvious that
most of the important scructural decisions
had been made irreversibly by the end of
architectural design.

o [t is difficuic to isolate and undersand
the effects of design methods. This is due
in part to the creatve narure of the design
process itself and in part to the heuristc
and therefore unpredicrable (as to their
effect) nature of most design methods.

In the Distos/Incas experiment, we
were tempted to auribute the observed su-
periority of systems implemented in Lady
to the janguage’s advanced soructurai fea-
tures. This seemed 0 be a valid conclu-
sion because we had keprail the other po-
tentally contribudng facrors as consant
as possible (we had ained studencs simi-
larty, used the same design-tool support.
andsoon).

However, follow-up interviews led us o
believe that the major conwibutor was the
object-oriented design approach that we
had wilored to support Lady’s sorucrural
concepws. This means that, in this swdy,
the synergy of language concepts and de-
sign support contributed the real benefits.
However, we were convinced that appro-
priate design support in isoladon prom-
ises more payoff than language supportin
isolation. Our conclusion agrees with
other experience (in the Ada community,
for exampie) that the best language con-
cepts are useless without guidelines and

2

6109

support for their effectve use.

Later studies at the SEL evaluated the
potential effect of different design ap-
proaches on the resultng design docu-
ments. These results made us queston
our previous conclusion because they re-
vealed that the designer’s experience and
background is much more impormant
than the design approach used.®

* Architectural design informadon has
more influence on mainwinability than
algorithmic design informadon. Several
publications have described the relative
importance of different algorithmically
oriented design-complexity measures.
Our experience suggests that it may not
be worth distinguishing among them be-

cause they all seem to be reladvely unim-
portant compared to intercomponent
complexity.

In the Distos/Incas experiment, we
compared some aigorithmic design mea-
sures (such as lines of code and McCabe's
cyclomadc-complexity measure), some
architectural design measures (such as
Henry and Kafura's informaton-flow
measure), and some hybrid design mea-
sures (combinations of architectural and
algorithmic measures) regarding their
ability to predict maintenance behavior.

As Figure 2 shows, in isoladon, the algo-
rithmic measures showed no significanc
correlation with mainainability. How-
ever, the architectural measures did (cor-
reladions in the range of 0.7 to 0.8, with a
significance level of less than 0.01). The
hybrid measures had only asiightly higher
correlation with mainainabilicy than the
architectural measures, but there was no
difference among them based on the al-
gorithmic measure used. Overall, the cor-
retations of hybrid design measures with

mainainability were only about 0.1 lower
than the correlatons of the same mea-
sures computed from source code.

e The dependency between construc-
ton and measurement is even more obvi-
ous during design than it was during cod-
ing. If we believe it is important to
measure ceruin architectural design
product or process aspects, we rmust en-
sure their measurabilicy.

Design product documenmdon meth-
ods vary in formality — ranging from in-
formal English to (semi)formal graph no-
rations. Most design product measures are
tailored to capture the aspects formaily
spedified according to a spedific method.
Thus, they cannot be applied across envi-
ronments that use different design meth-
ods.

The creative nature of the design pro-
cess means that many aspects cannot be
formalized, and consequendy measured,
at all. While formalizatdon (and conse-
quent automation) is a solution for more
mechanical processes (such as compila-
tion), it is not feasible for design pro-
cesses. The onlyfeasible way to make com-
plex creatve processes more manageable
and measurable is to divide them into
smaller processes with well-defined inter-
faces that can be checked — the divide-
and-conquer prindple.

In the Distos/Incas project, we applied
the divide-and-conquer principle in the
form of a stepwise, refinementoriented
design process. (The Cleanroom method
uses a similar but much more formai ap-
proach.?) In our approach, formal specifi-
cadons were iteragvely refined into lower
level specifications. After each refinement
step, the result is proven correct with re-
spect to the input specificadion. This ap-
proach let us control the design process
and lent itself o measurement (such as
the number of design decisions and how
much complexity each design step addsto
the design document).

Design predictability. We must develop
ways o predict maintinability with archi-
tectural design measures. Thismeans that
we must understand the relationship be-
tween a2 component's design characteris-
tics and its maintenance behavior.

In the Distos/Incas project, we used our
stepwise design approach and measured

IEEE Software

Typical life-cycie products

Camplexitly measures

|

Architectural design documents
—
{ Significant
Algorithmic design documents [0.7, 0.8}
AAAAAA AnAAAA ; Hybrid measures
e .
d S Architectural measures P
~ T : Significant
ithmi H * correlation with
By v H s (0.75, 0.85
l : No significant correlation : (07,08 :
Sourcs code : r‘?g]' maintainability : :
: 5 Hybrid measures
1 1 Architectural measures
] — $10.80, 0.95]
AAAAAA otvvvv\ Algorithmic measures 107, 0.8] s
4

[vaasesse

;l"l

[Coda in operation

I___..‘

Actual maintenance measures (stfort, locaiity)

the architecture of Lady components. We
then measured their maintenance behaw
ior with some effort- and error-based mea-
sures.

From this, we learned thac

* You canuse design measures to predict
maintainability. Generally, the design
phase 13 considered to be where the signa-
ture of a system is created. If we can mea-
sure during that phase, we should be abie
10 use this informaton w predict many
process and product aspects as the life
Cycle progresses.

In the Distos/Incas experiment, we
found that design measures could predict
maintenance, locality, isolation effort,
modification, and understandability al-
most as well as the corresponding code
measures. Some of the measures were ap-
plicable as earlyas the end of architecrural

* We should expand the definiton of
design measures. The Distos/Incas exper-
iment supports the belief that arue lever-
age is possible from measuring and un-
derstanding the architectural aspects of
the design product and process, as op-

March 1830

6109

posed to the algorithmic aspects mea-
sured by traditonal design measures. For
example, design-process measures could
capuure design effort, errors commiuned
and corrected during design, the effec-
tveness of design methods in supportng
fundamental design principles, and the
human aspect in assessing design alterna-
tives and resolving conilicss.'?

In the Distos/ Incas experiment, we con-
centrated on measuring the soructural as-
pects of design products. However, we also
evaluated the sability of designs created
according to design methods that sup-
ported different soructural language con-
cepes. It was very clear from comparisons
of the evolving design versions and from
the designers’ comments that the design
method tailored to the Lady language
(which identdifies three structural leveils)
resulted in fewer redesigns than the
method tilored to madidonal languages
(which typicaily identfy only two struc-
tural levels?).

In the SEL, we use a wide spectrum of
design measures, ranging from subjective
measures that capture the human experi-

Figure 2. The capabiiities of complexity measures to predict maintainability during design and coding phases.

ence with design methods, to measures
that caprure the effectiveness of design
methods in preventng certain errors, to
effort and error measures.*

¢ [t is important to document all design
decisions. It has long been recognized
thar missing design information makes it
extremely difficult to maintain software
efficienty. While the final design isimpor-
uant, the design radonale is at least as im-
porant if you are to understand design
dedisions and awoid recreating previously
rejected design alternatives.

In the Distos/Incas experiment, we
used more explicit design documents
than are used in most production envi-
ronments. However, the informaton-flow
measures derived from the final design
document had only average predicave ca-
pabilides. Further analysis revealed that
whenever a2 component had implicit de-
pendencies with other components its
maintenance behavior was poorly pre-
dicted. Implicit dependencies berween
components included the use of the same
constant, the use of the same algorithm,
and architectural dependencies.®

23

These design decisions were not re-
flected explicity in the final design docu-
ment. Fortunately, we had stored all the
versions created during development, so
we could do a posunortem analysis to
idendfy many implicit dependencies. This
caused us to extend Henry and Kafura’s
informadon-flow model with implicit.
global information flows. The new design
measure, which combines explicitand im-
plicit information flows, was significandy
more reliable in predicting maintenance
behavior.

Research framework

Measurement is useful o undersand,
control, and improve products and pro-
cesses based on objective data rather than
subjective judgment. It also heips you
build better models of processes and
products. However, successful measure-
ment requires more than a set of mea-
sures, just as successful design requires
more than a set of design tools.

1 suggest the following comprehensive
design-measurement framework, which
includes measurement approaches,
mechanisms to model design aspects, the
entire range of candidate design mea-
sures, and guidelines for reporting de-
sign-measurement resulits:’

» Choose and ailor an effective mea-
surement approach. I suggest the GQM
and quality-improvement paradigms for
both individual experiments and case
studies as well as contnuous organiza
uonal improvement. Both paradigms the-
oretically can exist without measurement.
but you must measure if you want to evalu-
ate and improve based on objective data
rather than just subjective judgment.

Both paradigms incorporate measure-
ment in agoaloriented fashion: Measures
serve goals! Both must be instantiated
into an operatonal approach wilored to
the specific environment characteristcs.’
In the TAME project, we developed tem-
platesand guidelinesto heip formally sup-
port thesetting of goalsand the derivation
of measures.*

¢ Model the design aspects of interest.
To use the paradigms properly, you must
model the product and process aspects of
interest. The product aspects of interest
are those addressed and documented
during the design phase (such asdawand

24

6109

intercomponent structure, and control
and informaction flow). The process as-
pects of interest are harder to model. Ina
separate project at the Universicy of Mary-
land, we are developing a process-model-
ing language that acknowledges the need
to specify mechanical and creative design
aspects by combining imperatve and con-
straint-oriented language principles.

» Consider a variety of design measures.
Candidaze design measures address the
design process and product, characterize
design aspects directly and use design
measures as indirect measures to help pre-
dict other qualities of interest (such as
maincinability), and represent design in-
formation objectively, subjectively, and on
differenc scales.

Design-process measures may capture
effort disuributions, defect profiles, or pat-
terns of design-conflict resoiutions. De-
sign-product measures include measures
of length, structural complexity, data-
structure and damflow complexity, and in-
formation-structure and informadon-
flow complexity.

A direct design measure characterizes a
design aspect. In comparing Lady systemns
to systerns impiemented in a tradidonal
language, the measure “stuctural com-
plexity in terms ofincoming and outgoing
information flows™ was used as a direct
measure of design-product complexity
and the measure “effort in saff-hours
spenton designing” as a direct measure of
design cost

An indirect design measure heips pre-
dict the expected value of a direct mea-
sure. To measure maintainability, mean-
ingful direct measures might be “effort
per maintenance change.” The indirect
design measure “structural complexity”
has been idendfied in the Distos/ Incas ex-
periment to be a useful indirect measure
for predicting maintainabilicy.

Knowing the refationship between indi-
rect and direct measures for a particular
characteristic lets you predict whether re-
quirements for this characteristic can be
fuifilled and in turn, where necessary, to
correct developments.

Objective design measures are pre-
ferred over subjective design measures.
Examples of typical objecuve measures
are “effort in s@ff hours spent on design”
and “number of design components.” Ex-

amples of rypical subjective measures are
“degree to which a design method was
used” and “experience of staff with the de-
sign method.” It is important to under-
stand the scale of a given: design measure
and the corresponding implicatdonson its
inmpmbﬂjq_ STV @Y TNODS LAR A b

+ Define guidelines for reportng mea-
surement resuis. The GOM and quality-
improvement paradigms provide notonly
a good context for measurement but
sound guidelines for reporting measure-
ment resuits as weil. You can use the steps
of the quality-improvement paradigm asa
structure to report resuits: .

1. Characterize the environment to the
degree necessary © understand the mea-
surement goals, the experimental design,
and the daa interpretations.

2. Describe the measurement goals.

3. Describe the measures chosen.

4. Describe the experimental design.
including procedures for data collecdon,
validadon, and analysis, as well as hypoth-
eses.

S. Characterize the coilected data.

8. Present the anaiysis results and vali-
date the hypotheses.

7. Summarize the conuibudon of the
results to the original goals and oudine
possible lessons for future measurement
tasks.

ffective design measurement
Epromises to coneribute to quality

and producdvity. Design measure-
ment has many dimensions and should be
closely tied to the design methodology
used. There are components of design-
measurement technology available today,
including general measurement ap-
proaches — the first TAME prototype is
composed largely of available measure-
ment technology.*

Design-measurement areas that require
further research include the develop-
ment of tracaable (or measurable) design
methods, the further formalization of
measurement approaches, the identfica
ton of imporant design principles thac
need to be better understood through de-
sign measures, the integration of con-
struction and measurement, and the
quantification of intellectual design activi-
ties such asexploring and rejecting design
aiternatves. >

|EEE Software

Acknow| ents

My work with juergen Nehmer and Victor
Basili and my invol in the Software En-
gineering Laboratory has conibuted signifi-
anty o my undersanding of design measure-
ment ! thank Brad Ulery for reading and
commenting on an carly version of this article.

R
1. J.Nehmer etal. “KeyConcepaofthelncas

Multicomputer Project,” [EEE Tront. Soft-
ware £ng., Aug. 1987, pp- 913-523.

2 H.D.Rombach, “A Conuolied Experiment
on the Impact of Software Sgucture on
Mainainability,” [EEE Trans. Software Eng.,
March 1987, pp. 344-354.

3. S. Henry and D. Kafura. “Software Souc-
ure Metrics Based on Information Flow.”
IFEE Trans. Software Eng., Sept 1981, pp.
510-518.

4, V.R Basiliand H.D. Rombach, “The TAME
Project Towards improvement-Oriented
Software Environmenu,” EEE Trans. Soft-
wareEng, june 1988, pp. 758-773.

6109

. H.D.Rombach and B.T. Ulery, “Improving

Software Maintenance th Measure-
ment.” Proc. [EEE, April 1989, pp. 581-595.

F.E. McGarry, S. Waligora, and T. McDer-
mott. “Experiences in the SEL Applving
Software Measurement,” Proc. [4tA Ann.
Softwars Eng. Womkshop, NASA/SEL Pub.
SEL-89-007, NASA Goddard Space Flight
Center, Greenbelt. Md., 1989.

. H.D. Rombach and L. Mark, “Software

Processand Product Specifications: A Basis
for Generating Customized SE Informa-
ton Bases,” Proc. 22 nd Hawaii Intl Conf. Sys-

H. Dieter Rombach is an assi proft of
computer science at the University of Mary-
land at College Park. He is aiso affiliated with
NASA'’s Software Engineering Laborawryand
the University of Maryiand's Insunute for Ad-

toms Saences, CS Press, Los Al Caiif., d Computer Scudies. His research inter-

1989, pp. 165-174. eats include software methodalogies, process
and prody and modeling, inte-

H.D. Rombach, “Software Design Memics graced sofi develop

for Maintenance,” Proc. Ninth Ann. and distributed programming.

Eng NASA/SEL Pub. SEL84- Rombach received a BS in mathematics and

004, NASA Goddard Space Flight Center, an MS in math ics and science

Greenbeit, Md., 1984.

. RW. Seiby, V.R. Basili, and T. Baker.

*Cleanroom Software Developmenc An
Empirical Evaluaton,” EEE Trans. Software
Eng., Sept. 1987, pp. 1.027-1,037.

. B. Curts etal., “On Building Software Pro-

cess Models Under the Lamppost.” Proc.
Ninth Ins't Conf, Software Eng.. CS Press. Los
Alamitos, Calif.. 1987, pp. 96-103.

from the University of Karisruhe, West Ger-
many, and a PhD in computer science from the
University of Kaiserslautern, West Germany.
Heisa ber of the IEEE Comp Soci
ACM, and the German Computer Sociery.

Address questions about this articie to
Rombach at Computer Science Dept.. Univer-
sity of Maryland, College Park, MD 20742;
CSnet dieter@cs.umd.edu.

o SECTION 3-SOFTWARE MODELS
o STUDIES

ION - FTW, DEL E

The technical papers included in this section were originally

prepared as indicated below.

6109

Towar mprehensive Framework for R : Model-

Based Reuse Characterization Schemes, V. Basili and

H. Rombach, University of Maryland Technical Report
TR-2446, April 1990
"Viewing Maintenance as Reuse-Oriented Software

Development,” V. Basili, IEEE Software,
January 1990

UMIACS-TR-90-47 April 1990
CS-TR-2446

Towards a Comprehensive Framework for Reuse:
Model-Based Reuse Characterization Schemes*

Victor R. Basili and H. Dieter Rombach
Institute for Advanced Computer Studies and
Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

Reuse of products, processes and related knowiedge will be the key to enable the
software industry to achieve the dramatic improvement in productivity and quality required to
satisfy the anticipated growing demands. We need a comprehensive framework of models and
model-based characterization schemes for better understanding, evaluating, and planning all as-
pects of reuse. In this paper we define requircments for comprehensive reuse models and relat-
ed characterization schemes, assess state-of-the-art reuse characterization schemes relative to
these requirements and motivate the need for more comprehensive reuse characterization
schemes. We introduce a characterization scheme based upon a general reuse model, apply it
and discuss its benefits, and suggest a model for integrating reuse into software development.

*Research for this study was supponied in part by NASA gram NSG-5123, ONR grant NOOO14-87-K-0307 and Airmics grant
DE-mail-840R21400 to the University of Maryland.

6109

6109

TABLE OF CONTENTS:

1 INTRODUGCTION .ooieieiereeiereseiutsene e smasessns s recsts s sas st as s s ans s an s pecennens

9 BASIC REQUIREMENTS FOR A REUSE CHARACTERIZATION SCHEME

4 MODEL-BASED REUSE CHARACTERIZATION SCHEMESccccovvvennenn
4.1 The Abstract Reuse Model ...o.ocooiimionmmriniici e
4.2 The First Model Refinement Levelcoccocceeiiiiniins e
4.3 The Second Model Refinement Level ...

4.3.1 Objects—Before—Reuseocoioieeenriicinmi
4.3.2 Objects—After—ReUSeocooiriniiereieeiiiin et
4.3.3 Reuse PTOCESS .ouuiiiriieiiiiieiiiieaeinirieieteessesasnen et ianatenanis s s sttt

5 APPLYING MODEL-BASED REUSE CHARACTERIZATION SCHEMES
5.1 Example Reuse Characterizationscoocvmmeerioncniiimminissn s
5.2 Describing/Understanding/Motivating Reuse SCEMATIOS evvrrernrremrececoeieesanuns
5.3 Evaluating the Cost of REUSecooiieeeiiiiiiiin e
5.4 Planning the Population of Reuse Repositories ...t

8 A REUSE-ORIENTED SOFTWARE ENVIRONMENT MODELccooccviinen
7 CONCLUSIONS iieooieirectrrartesearessesresssssrasnerasreesastssssrse s s asaas s ea s n s e s s
8 ACKNOWLEDGEMENTS ...coeotereeitisstanemeessirisassestssinmsanisstasssssntssssasaassonessies

9 REFERENGCES ...ooecoiitieeeteeastrsiasseronsasssss sanassssasaasesnssssmassssssssstassasassssassnasanss

~1 = 2 W

[=

(=2}

[4] WO W otw Wy
[2] ~3 o«

(2
Pt

31

32

1. INTRODUCTION

The existing gap between demand and our ability to produce high quality software cost-
effectively calls for an improved software development technology. A reuse oriented development
technology can significantly contribute to higher quality and productivity. Quality should
improve by reusing proven experience in the form of products, processes and related knowledge
such as plans, measurement data and lessons learned. Productivity should increase by using
existing experience rather than creating everything from scratch. Many different approaches to

reuse have appeared in the literature {e.g., [7, 9, 11, 13, 14, 15, 16, 21, 22, 23|).

Reusing existing experience is a key ingredient to progress in any area. Without reuse
everything must be re-learned and re—created; progress in an economical fashion is unlikely.
The goal of research in the area of reuse is the achievement of systematic approaches for effec-

tively reusing existing experience to maximize quality and cost benefits.

This paper defines and demonstrates the usefulness of model-based reuse characterization
schemes. From a number of important assumptions regarding the nature of software development
and reuse we derive four essential requirements for any useful reuse models and related character-
ization schemes (Section 2). Existing models and characterization schemes are assessed with
respect to these assumptions and the need for more comprehensive models and characterization
schemes is established (Section 3). We introduce a reuse characterization scheme based on a gen-
eral model of reuse (Section 4), and discuss its practical application and benefits {Section 5).
Throughout the paper we use examples of reusing generic Ada packages, design inspections, and
cost models to demonstrate our approach. Finally, we present a model for integrating and sup-

porting reuse in software development (Section 6).

6109

2. BASIC REQUIREMENTS FOR A REUSE CHARACTERIZATION SCHEME

The reuse approach presented in this paper is based on a number of assumptions regarding
software development in general and reuse in particular. These assumptions are based on more
than ten years of analyzing software processes and products [1, 3, 4, 5, 6, 19]. This section states
our assumptions regarding development and reuse (Sections 2.1 and 2.2, respectively), and derives

a set of characteristics required for any useful reuse characterization scheme (Section 2.3).

2.1. Software Development Assumptions

According to a common software development project model depicted in Figure 1, the goal
of software development is to produce project deliverables (i.e., project output) that satisfy pro-
ject needs (i.e., project input) (25]. This goal is achieved according to some development process

model which coordinates personnel, practices, methods and tools.

personnel

project project
development process model

needs deliverables

practices methods tools

Figure 1: Software Development Project Model

6109

With regard to software development we make the following assumptions:

(D1) A single software development process model cannot be assumed for all software
development projects: Different project needs and other project characteristics may suggest
and justify different development process models. The potential differences may range from
different development process models themselves to different practices, methods and tools sup-
porting these development process models to different personnel.

(D2) Practices, methods and tools ~ including reuse-related ones — need to be tailored
to the project needs and characteristics: Under the assumption that practices, methods
and tools support a particular development project, they need to be tailored to the needs and

objectives, development process model, and other characteristics of that project.

2.2. Software Reuse Assumptions

Reuse—oriented software development (depicted in Figure 2) assumes that, given the
project—specific need to develop an object 'x’ that meets specification 'Y, we take advantage of
some already existing object ’xk' e {’xl’, ey ".\'n’} instead of developing 'x’ from scratch. In this
case, ‘X’ is not only the specification for 'x’ but also the reuse specification for the set of reuse
candidates ’xl’, ey ’xn’. Reuse includes the identification of a set of reuse candidates {’xl’, -
’xk’, vn ’xn’}, the evaluation of their potential to satisfy reuse specification '¥’ effectively and the
selection of the best-suited candidate ’xk’, the possible modification of the chosen candidate ’xk’

into 'x’, and the integration of 'x’ into the development process of the current project.

6109

project

development process modei
project -
needs

,T

Figure 2: Reuse-Oriented Software Development Model

With regard to software reuse we make the following assumptions:

(R1) All experience can be reused: Typically, the emphasis is on reusing objects of type
'source code’. This limitation reflects the traditional view that software equals code. [t ignores
the importance of reusing software products across the entire life~cyvele (which includes the
planning as well as the production phases of a software development project), software
processes and methods, and other kinds of knowledge such as models, measurement data or les-

sons learned.

The reuse of 'generic Ada packages’ represents an czample of product reuse. Generic Ada pack-
ages represent templates for instantiating specific package objects according to a parameter
mechanisms. The reuse of 'design inspections’ represents an ezample of process reuse. Design
inspections are off-line fault detection and isolation methods applied during the module design
phase. They can be based on different technigues for reading (e.g., ed hoc, sequential, control
flow oriented, stepwise abstraction oriented). The reuse of 'cost models’ represents an czample
of knowledge reuse. Cost models are used in the estimation, cvaluation and control of project
cost. They predict cost (c.g., in the form of staff-months) based on o number of characteristic
project parameters (e.g., cstimated product size in KLoC, product complezsty, methodology
level).

(R2) Reuse typically requires some modification of the object being reused: Under the

assumption that software developments may be different in some way, modification of

6109

deliverables

experience from prior projects must be anticipated. The degree of modification depends on how
many, and to what degree, existing object characteristics differ from their desired characteris-

tics.

To reuse an Ada package 'list of integers’ to organize a 'list of reals’ we need to modify it. We
can cither modify the existing package by hand, or we can use a generic package 'list’ which can
be instontiated via a parameler mechanism for any base type.

To reuse a design inspection method across projects characterized by significantly different fault
profiles, the underlying reading technique may need to be tailored to the respective fault profiles.
If ’interface faults’ replace ‘control flow faults’ as the most common fault type, we can either
select a different reading technique all together (c.g., step-wise abstraction instead of control-
flow oriented) or we can establish specific guidelines for identifying interface faults.

To reuse a cost model across projects characterized by different application domains, we may
have to change the number and type of characteristic project parameters used for estimating
cost as well as their impact on cost. [f 'commercial software’ is developed instead of 'real-time
software’, we may have to consider re-defining ‘estimated product size’ to be measured in terms
of 'date structures’ instead of lines of code’ or re-computing the impact of the existing parame-
ters on cost. Using a cost model effectively tmplies a constant updating of our understanding of
the relationship between project parameters and cost.

(R3) Analysis is necessary to determine when and if reuse is appropriate: The decision
to reuse existing experience as well as how and when to reuse it needs to be based on an
analysis of the payoff. Reuse payoff is not always easy to evaluate. We need to understand (i)
the objectives of reuse, (ii) how well the available reuse candidates are qualified to meet these

objectives, and (iii) the mechanisms available to perform the necessary modification.

Assume the existence of a set of Ada generics which represent application-specific components
of a satellite control system. The objective may be to reuse such components to build a new
satellite control system of a similar type, but with higher precision. Whether the ezisting gener-
tcs are sustable depends on a variety of characteristics: Thesr correctness and reltability, their
performance in prior instances of reuse, their ease of integration into & new system, the poten-
tial for achieving the higher degrec of precision through instantliation, the degree of change
needéd, and the eristence of reuse mechanisms that support this change process. Candidate
Ada generics may theoretically be well suited for reuse; however, without knowing the answers
to these questions, they may not be reused due to lack of confidence that reuse will pay off.

Assume the existence of a design inspection method based on ad-hoc reading which has been
used successfully on past satellite control software developments within a standard waterfall
model. The objective may be to reuse the method in the context of the Cleanroom development
method [18, 20f. In this case, the method needs to be applicd tn the context of a different life-
cycle model, different design approach, and different design representations. Whether and how
the existing method can be reused depends on our abslity to taslor the reading technique to the
stepwise refinement oriented design technique used in Cleanroom, and the required intensity of

6109

reading duc to the omission of developer testing. This results in the definition of the stepwise
abstraction oriented reading technique [8/.

Assume the ezistence of a cost model that has been validated for the development of satellite
control software based on a waterfall life-cycle model, functional decomposition oriented design
techniques, and functional and structural testing. The objective may be to reuse the model tn
the contezt of Cleanroom development. Whether the cost model can be reused at all, how it
needs to be calibrated, or whether a completely different model may be more appropriate
depends on whether the model contains the appropriate variables nceded for the prediction of
cost change or whether they simply need to be re-calibrated. This question can only be answered
through thorough analysis of a number of Cleanroom projects.

(R4) Reuse must be integrated into the specific software development: Reuse is intended
to make software development more effective. In order to achieve this objective we need to

tailor reuse practices, methods and tools towards the respective development process.

We have to decide when and how to identify, modify and integrate ezisting Ada packages. If we
assume identification of Ada generics by name, and modification by the generic paremeter
mechanism, we require a repository consisting of Ada generics together with a description of the
instantiation parameters. If we assume identification by specification, and modification of the
generic’s code by hand, we require a suitable specification of each generic, a definition of
semantic closeness of specifications so we can find sustable reuse candidates, and the appropri-
ate source code documentation to allow for ease of madification. In the case of identification
by specification we may consider identifying reuse candidates at high-level design (i.c., when the
component specifications for the new product ezist) or even when defining the requirements.

We have to decide on how often, when, and how design inspections should be integrated tnto the
development process. If we assume o waterfall-based development life-cycle, we need to deter-
mine how many design inspections need to be performed and when (¢.g., once for all modules at
the end of module destgn, once for all modules of a subsystem, or once for each module). We
need to state which documents are required as input to the design inspection, what results are
to be produced, what actions are to be taken, and when, in case the results are insufficient, and
who is supposed to participate.

We have to decide when to initially estimate cost and when to update the initial estimate. [f we
assume o waterfall-based development life-cycle, we may estimate cost initially based on
estimated product and process parameters {e.g., estimated product size). After each milestone,

the estimated cost can be compared with the actual cost. Possible deviations are used to correct
the estimate for the remainder of the project.

2.3. Software Reuse Characteristics

The above software reuse assumptions suggest that 'reuse’ is a complex concept. We need to
build models and characterization schemes that allow us to define and understand, compare and

evaluate, and plan the objectives of reuse, the candidate objects of reuse, the reuse process itself,

6109

and the potential for effective reuse. Based upon the above assumptions, such models and charac-

terization schemes need to exhibit the following characteristics:

(C1) Applicable to all types of reuse objects: We want to be able to characterize products,
processes and all other types of related knowledge such as plans, measurement data or lessons
learned.

(C2) Capable of characterising objects—before-reuse and objects—after—reuse: We want
to be able to characterize the reuse candidates (from here on called 'objects—before-reuse’) as
well as the object actually being reused in the current project (from here on called ’object-
after-reuse’). This will enable us to (i) judge the suitability of a given reuse candidate based on
the distance between its actual before-reuse and desired after-reuse characteristics, and (ii)
establish criteria for useful reuse candidates (object-before-reuse characteristics) based on anti-
cipated objectives for their (re)use (object-after-reuse characteristics).

(C3) Capable of characterising the reuse process itself: We want to be able to (i) judge
the ease of bridging the gap between different object characteristics before- and after-reuse,
and (ii) derive additional criteria for useful reuse candidates based on characteristics of the
reuse process itself.

(C4) Capable of being systematically tailored to specific project (i.e., development
and reuse) needs and other characteristics: We want to be able to adjust a given reuse
characterization scheme to changing needs in a systematic way. This requires not only the abil-
ity to change the scheme, but also some kind of rationale that ties the given reuse characteriza-
tion scheme back to its underlying model and assumptions. Such a rationale enables us to

identify the impact of different environments and modify the scheme in a systematic way.

6109

3. STATE-OF-THE-ART REUSE CHARACTERIZATION SCHEMES

A

A number of research groups have developed characterization schemes for reuse (e-g., [9, 11,

13, 21, 22]). The schemes can be distinguished as special purpose schemes and meta schemes.

The large majority of published characterization schemes have been developed for a special
purpose. They consist of a fixed number of characterization dimensions. There intention is to
characterize software products as they exist. Typical dimensions for characterizing source code
objects in a repository are “function®, “size”, or "type of problem®. Examples schemes include
the schemes published in {11, 13|, the ACM Computing Reviews Scheme, AFTPS’s Taxonomy of
Computer Science and Engineering, schemes for functional collections (e.g., GAMS, SHARE, SSP,
SPSS, IMSL) and schemes for commercial software catalogs (e.g., ICP, IDS, IBM Software Cata-
log, Apple Book). It is obvious that special purpose schemes are not designed to satisf{y the reuse

modeling characteristics of section 2.3.

A few characterization schemes can be instantiated for different purposes. They explicitly
acknowledge the need for different schemes (or the expansion of existing ones) due to different or
changing needs of an organization. They, therefore, allow the instantiation of any imaginable
scheme. An excellent example is Ruben Prieto-Diaz’s facet-based meta-characterization scheme
(14, 17]. Theoretically, meta schemes are flexible enough to allow the capturing of any reuse
aspect. However, based on known examples of actual uses of meta schemes, such broadness seems
not intended. Instead, most examples focus on product reuse, are limited to the objects—before-
reuse, and ignore the reuse process entirely. Meta schemes were also not designed to satisfy the

reuse modeling characteristics of section 2.3.

We have found that existing schemes - special purpose as well as meta schemes — do not
satisfy our requirements. To illustrate the problems associated with their limitations, we use the

following example scheme which can be viewed either as a special-purpose scheme or a specific

6109

t 3
instantiation of a meta scheme :

Each reuse candidate is characterized in terms of

e name: What is the object’s name? (e.g., buffer.ada, sel_inspection, sel_cost._model)

o function: What is the functional specification or purpose of the object? (e.g., integer_queue,
<element>_buffer, sensor control system, certify appropriateness of design documents,
predict project cost)

o use: How can the object be used? (e.g., product, process, knowledge)

o type: What type of object is it? (e.g., requirements document, code document, inspection
method, coding method, specification tool, graphic tool, process model, cost model)

o granularity: What is the object’s scope? (e.g., system level, subsystem level, component
level, module — package, procedure, function - level, entire life cycle, design stage, coding
stage)

e representation: How is the object represented? (e.g., data, informal set of guidelines,
schematized templates, formal mathematical model, languages such as Ada, automated tools)

e input/output: What are the external input/output dependencies of the object needed to
completely define/extract it as a self-contained entity? (e.g., global data referenced by a
code unit, formal and actual input/output parameters of a procedure, instantiation parame-
ters of a generic Ada package, specification and design documents needed to perform a design
inspection, defect data produced by a design inspection, variables of a cost model)

o dependencies: What are additional assumptions and dependencies needed to understand the
object? (e.g., assumption on user’s qualification such as knowledge of Ada or qualification to
read, specification document to understand a code unit, readability of design document,
homogeneity of problem classes and environments underlying a cost model)

e application domain: What application classes was the object developed for? (e.g. ground
support software for satellites, business software for banking, payroll software)

e solution domain: What environment classes was the object developed in? (e.g., waterfall
life—cycle model, spiral life-cycle model, iterative enhancement life-cycle model, [unctional
decomposition design method, standard set of methods)

e object quality: What qualities does the object exhibit? {e.g., level of reliability, correctness,
user—{riendliness, defect detection rate, predictability)

Let’s assess the above reuse characterization scheme relative to the four desired characteristics of

section 2.3:

(C1) It is theoretically possible to characterize all types of experience according to the above
scheme (in case of a meta scheme we could even create new ones). For example, a generic Ada
package 'buffer.ada’ may be characterized as having identifier 'buffer.ada’, offering the function
'<element>_buffer’, being usable as a ’product’ of type 'code document’ at the 'package
module level’, and being represented in ’'Ada’. The self-contained definition of the package

requires knowledge regarding the instantiation parameters as well as its visibility of externally

* Characterization dimensions are marked with '~’; example categories for each dimension are listed in parenthesis.
- 10 -
3-12

6109

defined objects (e.g., explicit access through WITH clauses, implicit access according to nesting
structure). In addition, effective use of the object may require some basic knowledge of the
language .Ada. and assume thorough documentation of the object itself. It may have been
developed within the application domain 'ground support software’, according to a 'waterfall
life-cycle’ and 'functional decomposition design’, and exhibiting high quality in terms of 'relia-
bility’.

(C2) The scheme is used to characterize reuse candidates (i.e., objects—before-reuse) only. How-
ever, in order to evaluate the reuse potential of an object—before-reuse in a given reuse
scenario, one needs to understand the distance between its characteristics and the characteris-
tics of the desired object (i.e., object-after-reuse). In the case of the Ada package example, the
required function may be different, the quality requirements with respect to reliability may be
higher, or the design method used in the current project may be different from the one accord-
ing to which the package has been created originally. Without understanding the distance to
be bridged between reuse requirements and reuse candidates it is hard to (a) predict the cost
involved in reusing a particular object, and (b) establish criteria for populating a reuse reposi-

tory that supports cost—effective reuse.

(C3) The scheme is not intended to characterize the reuse process at all. To really predict the
cost of reuse we do not only have to understand the distance to be bridged between objects—
before and objects-after-reuse (as pointed out above}, but also the intended process to bridge it
(i.e., the reuse process). For example, it can be expected that it is easier to bridge the distance
with respect to function by using a parameterized instantiation mechanism rather than modify-

ing the existing package by hand.

(C4) Their is no explicit rationale for the eleven dimensions of the example scheme. That makes
it hard to reason about its appropriateness as well as modify it in any systematic way. There
is no guidance in tailoring the example scheme to new needs neither with respect to what is to

changed (e.g., only some categories, dimensions, or the entire implicitly underlying model) nor

- 11 -

6109

how it is to be changed.

The result of this assessment suggests the urgent need for new, better reuse characterization
schemes. In the next section, we suggest a model-based scheme which satisfies all four characteris-

tics.

4. MODEL-BASED REUSE CHARACTERIZATION SCHEMES

In this section we define a model-based reuse characterization scheme satisfying the charac-
teristics (C1—4) stated in section 2.3. We start this modeling approach with a very general reuse
model satisfying satisfying the reuse assumptions, refine it step by step until it generates reuse
characterization dimensions at the level of detail needed to understand, evaluate, motivate or
improve reuse. This modeling approach allows us to deal with the complexity of v,l:xe modeling

task itself, and document an explicit rationale for the resulting model.

4.1. The Abstract Reuse Model

The general reuse model used in this section is consistent with the view of reuse represented
in section 2.2. It assumes the existence of objects—before-reuse and objects—after-reuse, and a

transformation between the two:

6109

OBJECTS REUSE OBJECTS

PROCESS
BEFORE AFTER

REUSE REUSE

Figure 3: Abstract Reuse Model (Refinement level 0)

The objects—before-reuse represent experience from prior projects, have been evaluated as being
of potential reuse value, and have been made available in some form of a repository. The
objects—after-reuse are the (potentially modified) versions of objects—before-reuse integrated into
some project other than the one they were initially created for. Object-after-reuse characteristics
represent the 'reuse specification’ for any candidate 'object-before-reuse’. Both the objects—
before-reuse and the objects-after-reuse may represent any type of experience accumulated in the
context of software projects ranging from products to processes to knowledge. The reuse process

transforms objects—before-reuse into objects-after-reuse.

4.2. The First Model Refinement Level

Figure 4 depicts the result of the first refinement step of the general model of Figure 3.

- 13 -

6109

bject interface

activity contex

_ object. context L.

OBJECTS REUSE OBJECTS
PROCESS
BEFORE ‘ AFTER

Figure 4: Our Reuse Model (Refinement level 1)

Each object-before-reuse is a specific candidate for reuse. It has various attributes that
describe and bound the object. Most objects are physically part of a system, i.e. they interact
with other objects to create some greater object. If we want to reuse an object we must under-
stand its interaction with other objects in the system in order to extract it as a unit, l.e. object
interface. Objects were created in some environment which leaves its characteristics on the

object, even though those characteristics may not be visible. We call this the object contezt.

The object-after-reuse is a specification for a set of before-reuse candidates. Therefore, we
may have to consider different attributes. The system in which the transformed object is

integrated and the system contezt in which the system is developed must also be classified.

The reuse process is aimed at extracting the object-before-reuse from a repository based on
the available object-after-reuse characteristics, and making it ready for reuse in the system and
context ixi which it will be reused. We must describe the various reuse activities and classify
them. The reuse activities need to be integrated into the reuse-enabling software development
process. The means of integration constitute the activity interface. Reuse requires the transfer of
experience across project boundaries. The organizational support provided for this experience

transfer is referred to as activity contezt.

— 14 —

6109

systém. context

Based upon the goals for the specific project, as well as the organization, we must evaluate
(i) the required qualities of the object-after—reuse, (ii) the quality of the reuse process, especially
its integration into the enabling software evolution process, and (iii) the quality of the existing

objects—before-reuse.

4.3. The Second Model Refinement Level

Each component of the First Model Refinement (Figure 4) is further refined as depicted in
Figures 5(a-c) . It needs to be noted that these refinements are based on our current understand-

ing of reuse and may, therefore, change in the future.

4.3.1. Objects—-Before-Reuse

In order to characterize the object itself, we have chosen to provide the following six dimen-
sions and supplementing categories: the object’s name (e.g., buffer.ada), its function (e.g.,
integer_buffer), its possible use (e.g., product), its type (e.g., requirements document), its granu-
larity (e.g., module), and its representation (e.g., Ada language). The object interface consists of
such things as what are the explicit inputs/outputs needed to define and extract the object as a
self-contained unit (e.g., instantiation parameters in the case of a generic Ada package), and what
are additionally required assumptions and dependencies (e.g., user’s knowledge of Ada). Whereas
the object and object interface dimensions provide us with a snapshot of the object at hand, the
object context dimension provides us with historical information such as the application classes
the objecg was developed for (e.g., ground support software for satellites), the environment the

object was developed in (e.g., waterfall life—cycle model), and its validated or anticipated quality

(e.s., reliability).

The resulting model refinement is depicted in Figure 3a.

6109

' - name

- function

— use

- type

| — granularity

| - representation

input/output

ob ject. interface \ .
— ' dependencies

_ object context __

OBJECTS
- application domain
BEFORE - solution domain
~ object quality
REUSE

Figure 5a: Reuse Model (Objects—Before-Reuse / Refinement level 2)

3

A detailed definition of the above eleven dimensions - together with example categories —
has already been presented in Section 3. In contrast to Section 3, we now have (1) a rationale for
these dimensions (see Figure 5a) and (ii) understand that they cover only part {i.e., the objects—

before-reuse) of the comprehensive reuse model depicted in Figure 4.

4.3.2. Objects—After—Reuse

In order to characterize objects—after-reuse, we have chosen the same eleven dimensions and
supporting categories as for the objects—before-reuse. The resulting model refinement is depicted

in Figure 5b:

6109

— name

- function

- use

- type

- granularity

- representation

. ohject. i 3

input/output
dependencies

- system o}

_ system context

OBJECTS

- application domain
AFTER - solution domain

— object quality
REUSE

Figure 5b: Reuse Model (Objects—After—Reuse / Refinement level 2)

However; an object may change its characteristics during the actual process of reuse.
Therefore, its characterizations before-reuse and after—reuse can be expected to be different. For
example, an object-before-reuse may be a compiler (type) product (use), and may have been
developed according to a waterfall life-cycle approach (solution domain). The object-alter-reuse
may be a compiler (type) process (use) integrated into a project based on iterative enhancement

(solution domain).

This means that despite the similarity between the refined models of objects—before-reuse
and objects—after-reuse, there exists a significant difference in emphasis: In the former case the
emphasis is on the potentially reusable objects themselves; in the latter case, the emphasis is on
the system in which these object(s) are (or are expected to be) reused. This explains the use of dif-
ferent dimension names: 'system’ and 'system context’ instead of ’object interface’ and ’'object

context’.

The distance between the characteristics of an object-before-reuse and an object-after—reuse

give an indication of the gap to be bridged in the event of reuse.

- 17 -

6109

4.3.3. Reuse Process

The reuse process consists of several activities. In the remainder of this paper, we will use a
model consisting of four basic activities: identification, evaluation, modification, and integration.
In order to characterize each reuse activity we may be interested in its name (e.g., modify pl), its
function (e.g., modify an identified reuse candidate to entirely satisfy given object-after-reuse
characteristics), its type (e.g., modification), and the mechanism used to perform i‘ts function (e.g.,
modification via parameterization). The interface of each activity may consist of such things as
what the explicit input/output interfaces between the activity and the enabling software evolution
environment are (e.g., in the case of modification: performed during the coding phase, assumes
the existence of a specification), and what other assumptions regarding the evolution environment
need to be satisfied (e.g., existence of certain configuration control policies). The activity context
may include information about how experience is transferred from ‘the object-before-reuse
domain to the object-after-reuse domain (experience transfer), and the quality of each reuse

activity (e.g., reliability, productivity).

This refinement of the reuse process is depicted in Figure 5c.

— name
— function

— | //]—type
T — mechanism

activity

| - input/output
1= dependencies

activity interface.

" activity context:

REUSE .
— experience transfer
PROCESS — reuse quality

Figure 5c: Reuse Model (Reuse Process / Refinement level 2)

In more detail, the dimensions and example categories for characterizing the reuse process are:

- 18 -

6109

+« REUSE PROCESS: For each reuse activity characterize:

+ Activity:

name: What is the name of the activity? (e.g., identify generics, evaluate.generics,

modify.generics, integrate.generics)

function: What is the function performed by the activity? (e.g., select candidate objects

{x.} which satisfy certain object categories of the object-after-reuse specification ',
1 p - .

evaluate the potential of the selected candidate objects of satisfying the given system and

system context dimensions of the object-after-reuse specification 'Y’ and pick the most

suited candidate 'x,’; modify ’xk’ to entirely satisfy 'T’; integrate object X’ into the

current development project)

type: What is the type of the activity? (e.g., identification, evaluation, modification,

integration)

mechanism: How is the activity performed? (in the case of identification: e.g., by name,

by function, by type and function; in the case of evaluation: e.g., by subjective judgement,

by evaluation of historical baseline measurement data; in the case of modification: e.g.,

verbatim, parameterized, template-based, unconstrained; in the case of integration: e.g.,

according to the system configuration plan, according to the project/process plan)

+ Activity Interface:

input/output: What are explicit input and output interfaces between the reuse activity
and the enabling software evolution environment? (in the case of identification: e.g.,
specification for the needed object-after-reuse / set of candidate objects—before-reuse; in
the case of modification: e.g., one selected object—before-reuse, specification for the needed
object-after-reuse / object-after-reuse)

dependencies: What are other implicit assumptions and dependencies on data and infor-
mation regarding the software evolution environment? {e.g., time at which reuse activity
is performed - relative to the enabling development process: e.g., during design or coding
stages; additional information needed to perform the reuse activity effectively: e.g., pack-
age specification to instantiate a generic package, knowledge of system configuration plan,
configuration management procedures, or project plan)

+ Activity Context:

6109

experience transfer: What are the support mechanisms for transferring experience across
projects? (e.g., human, experience base, automated)

reuse quality: What is the quality of each reuse activity? (e.g., high reliability, high
predictability of modification cost, correctness, average performance)

5. APPLYING MODEL-BASED REUSE CHARACTERIZATION SCHEMES

We demonstrate the applicability of our model-based reuse scheme by characterizing three
hypothetical reuse scenarios related to product, process and knowledge reuse: Ada generics, design
inspections, and cost models (Section 5.1). The characterization of the Ada generics scenario is
furthermore used to demonstrate the benefits of model-based characterizations to
describe/understand/motivate a given reuse scenario (Section 5.2), to evaluate the cost of reuse

(Section 5.3), and to plan the population of a reuse repository (Section 5.4).

5.1. Example Reuse Characterizations

The characterization scheme of section 4 has been applied to the three examples of product,
process and knowledge reuse introduced in section 2. The resulting characterizations are contained

in tables 2, 3, and 4:

6109

Reuse Examples

Dimensions Ada generic design inspection cost model
name buffer.ada sel_inspection.waterfall sel_cost_modei.fortran
function <element>_buffer certily appropriateness predict
of design documents project cost
use product process knowledge
type code document, inspection method cost model
granularity package design stage entire life cycle
representation Ada/ informal set of formal mathematical
generic package guidelines model
input/output formal and actual specification and estimated product
instantiation params design document needed, size in KLOC,
defect data produced complexity rating,
methodology level,
cost in stall_hours
dependencies assumes Ada knowiedge | assumes a readable design, assumes a relativeiy

qualified reader

homogeneous class
of problems and environments

application domain

solution domain

object quality

ground support
sw for satellites

waterfall (Fortran)
life-cycie model,
functional de-
composition design
method

high reliability
(e.g., < 0.1 defects

per KLoC for a given
set of acceptance tests)

ground support
sw for satellites

waterfall (Fortran)

life—cycle modeli,

standard set of
methods

average defect
detection rate
(e.g., > 0.5 defects
detected per sta{l_hour)

ground support
sw for sateilites

waterfall (Fortran)
life—cycle model
standard set of
methods

average predictability

(e.8., < 5% pre-
diction error)

~ Table 2: Characterization of Example Reuse Objects—Before—Reuse

6109

Dimsnsions

Reuse Examples

Ada generics

design inspection

cost model

name

lunction

use
type
graaularity

representation

string_buffer.ada

string_bulfer

product
code document,
package

Ada

sel_inspection.cieanroom

certily appropriateness
of design documents

process
inspection method
design stage

informal set of
guidelines

sel_cost_model.ada

predict
project cost

knowledge
cost model
entire life cycle

formal mathematical
model

input/output

dependencies

formal and actual
instantiation params

assumes Ada knowledge

specification and
design document needed,
defect data produced

assumes a readable design,
qualified reader

estimated product
size in KILLOC,
complexity rating,
methodology level,
cost in stall_hours

assumes a rejatively
homogeneous ciass

of problems and environments

application domain

solution domain

object quality

ground support
sw for satellites

waterfall (Ada)
life~cycie model,
object oriented
design method

high reliability

(e.8., < 0.1 defects
per KLoC [or a given
set of acceptance tests),
high performance
(e.g., max. response times
for a set of tests)

ground support
sw for satellites

Cleanroom (Fortran)

development model,

stepwise refinement
oriented design,
statistical testing

high defect
detection rate
(e.g., > 1.0 defects
detected per stafl_hour)
wrt. interface faults

ground support
sw for sateilites

waterfall (Ada)
life~cycie model,
revised set of
methods

high predictability

(e.8., < 2% pre-
diction error)

Table 3: Characterization of Example Reuse Objects—After—Reuse

Reuse Examples

Dimensions Ada generics design inspection cost model

name modify.generics modify.inspections modify.cost_models

function modify to satisfy modify to satisfy modify to satis{y
target specification target specification target specification

type modiflcation modification modification

mechanism parameterized unconstrained template-based
(generic mechanism)

input/output buffer.ada, sel_inspection. waterfall, sel_cost_model.fortran,

dependencies

reuse specification/
string_buffer.ada

performed
during coding stage,
package specification
needed,

knowledge of
system configuration
plan

reuse specification/
set_inspection.cleanroom

performed
during planning stage,

knowledge of
project plan

reuse specification/
sel_cost_model.ada

performed
during planning stage,

knowledge of historical
project. profiles

experience transfer

reuse quality

experience base

correctness

human and
experience base

correctness

human and
experience base

correctness

Table 4: Characterization of Example Reuse Processes

5.2. Describing/Understanding/Motivating Reuse Scenarios

We will demonstrate the benefits of our reuse characterization scheme to describe, under-

stand, and motivate the reuse of Ada generics as characterized in section 3.1.

We assume that in some project the need has arisen to have an Ada package implementing

a 'string_buffer’ with high 'reliability and performance’ characteristics. This need may have been

established during the project planning phase based on domain analysis, or during the design or

coding stages. This package will be integrated into a software system designed according to

6109

- 23 -

object—oriented principles. The complete reuse specification is contained in Table 3.

First, we identify candidate objects based on some subset of the object related characteris-
tics stated in Table 3: string_buffer.ada, string_buffer, product, code document, package, Ada.
The more characteristics we use for identification, the smaller the resulting set of candidate
objects will be. For example, if we include the name itself, we will either find exactly one object
or none. ldentification may take place during any project stage. We will assume that the set of

successfully identified reuse candidates contains ’buffer.ada’, the object characterized in Table 2.

Now we need to evaluate whether and to what degree ’'buiffer.ada’ (as well as any other
identified candidate) needs to be modified and estimate the cost of such modification compared to
the cost required for creating the desired object ’string_buffer’ from scratch. Three characteristics
of the chosen reuse candidate deviate from the expected ones: it is more general than needed (see
function dimension), it has been developed according to a different design approach {see solution
domain dimension), and it does not contain any information about its performance behavior (see
object quality dimension). The functional discrepancy requires instantiating object 'buffer.ada’ for
data type 'string’. The cost of this modification is extremely low due to the fact that the generic
instantiation mechanism in Ada can be used for modification (see Table 4). The remaining two
discrepancies cannot be evaluated based on the information available through the characteriza-
tions in section 5.1. On the one hand, ignoring the solution domain discrepancy may result in
problems during the integration phase. On the other hand, it may be hard to predict the cost of
transforming ’buffer.ada’ to adhere to object—oriented principles. Without additional information
about either the integration of non-object—oriented packages or the cost of modification, we only
have the choice between two risks. Predicting the cost of changes necessary to satisfy the stated
object performance requirements is impossible because we have no information about the
candidate’s performance behavior. It is noteworthy that very often practical reuse seems to fail
because of lack of appropriate information to evaluate the reuse implications a-priori, rather than

because of technical infeasibility.

6109

In case the object characterized in Table 2 has been modified successfully to satisfy the
specification in Table 3, we need to integrate it into the ongoing development process. This task
needs to be performed consistently with the system configuration plan and the process plan used
in this project.

The characterization of both objects (before/after-reuse) and the reuse process allow us to
understand some of the implications and risks associated with discrepancies between identified
revse candidates and target reuse specification. Problems arise when we have either insufficient
information about the existence of a discrepancy (e.g., object performance quality in our exam-
ple), or no understanding of the implications of an identified discrepancy (e.g., solution domain in
our example). In order to avoid the first type of problem, one may either constrain the
identification process further by including characteristics other than just the object related ones,
or not have any objects without 'performance’ data in the reuse repository. If we had included
'desired solution domain’ and ’object performance’ as additional criteria in our identification pro-
cess, we may not have selected object "buffer.ada’ at all. If every object in our repository would
have performance data attached to it, we at least would be able to establish the fact that there
exists a discrepancy. In order to avoid the second type of problem, we need have some (semi-)
automated modification mechanism, or at least historical data about the cost involved in similar
past situations. It is clear that in our example any functional discrepancy within the scope of the
instantiation parameters is easy to bridge due to the availability of a completely automated
modification mechanism (i.e., generic instantiation in Ada). Any functional discrepancy that can-
not be bridged through this mechanisms poses a larger and possibly unpredictable risk. Whether
it is more ;:ostly to re-design 'buffer.ada’ in order to adhere to object oriented design principles or

to re-develop it from scratch is not obvious without past experience.

Based on the preceding discussion, the motivational benefits are- that we have a sound
rationale for suggesting the use of certain reuse mechanisms (e.g., automated in the case of Ada

packages to reduce the modification cost), criteria for populating a reuse repository (e.g., do

- 25 —

6109

exclude objects without performance data to avoid the unnecessary expansion of the search
space), criteria for identifying reuse candidates effectively according to some reuse specification
(e.g., do include solution domain to avoid the identification of candidates with unpredictable
modification cost), or certain types of reuse specifications (e.g., require that each reuse request is
specified in terms of all object dimensions, except probably name, and all system context dimen-

sions).

5.3. Evaluating the Cost of Reuse

We will demonstrate the benefits of our reuse characterization scheme to evaluate the cost

of reusing Ada generics as characterized in section 5.1.

The general evaluation goals are (i) characterize the degree of discrepancies between a given
reuse specification (see Table 3) and a given reuse candidate (Table 2), and (ii) what is the cost of
bridging the gap between before-reuse and after-reuse characteristics. The first type of evaluation
goal can be achieved by capturing detailed information with respect to the object-before-reuse
and object-after-reuse dimensions. The second goal requires the inclusion of data characterizing

the reuse process itself and past experience about similar reuse activities.

We use the goal/question/metric paradigm to perform the above kind of goal-oriented
evaluation [8, 8, 10]. It provides templates for guiding the selection of appropriate metrics based
on a precise definition of the evaluation goal. Guidance exists at the level of identifying certain
types of metrics (e.g., to quantify the object of interest, to quantify the perspective of interest, to
quantify the quality aspect of interest). Using the goal/question/metric paradigm in conjunction
with reuse characterizations like the ones depicted in Tables 2, 3, and 4, provides very detailed
guidance as to wﬁat exact metrics need to be used. For example, evaluation of the Ada generic
example suggests metrics to characterize discrepancies between the desired object-after-reuse and
all before-reuse candidates in terms of (i) function, use, type, granularity, and representation on a

nominal scale defined by the respective categories, (ii) input/output interface on an ordinal scale

- 26 —

6109

'number of instantiation params’, (iii) application and solution domains on nominal scales, and

(iv) qualities such as performance based on benchmark tests.

5.4. Planning the Population of Reuse Repositories

We will demonstrate the benefits of our reuse characterization scheme to populate a reuse

repository with generic Ada packages as characterized in section 5.1.

Reuse is economical from a project perspective if the effort required to bridge the gap
between an object—before-reuse {available in some experience base) and the desired object-after-
reuse is less than the effort required to create the object-after-reuse from scratch. Reuse s
economical from an organization’s perspective if the effort required for creating the reuse reposi-

tory is less than the sum of all project-specific savings based on reuse.

Based on the above statement, populating a reuse repository constitutes an optimization
problem for the organization. For example, high effort for populating a reuse repository may be
justified if (i) small savings in many projects are expected, or (ii) large savings in a small number
of projects are expected. For example, object ‘buffer.ada’ could have been transformed to adhere
to object oriented principles prior to in%roducing it into the repository. This would have excluded

the project specific risk and cost.

The cost of reusing an object-before-reuse from an experience base depends on its distance
to the desired object-after-reuse and the mechanisms employed to bridge that distance. The cost
of populating a reuse repository depends on how much effort is required to transform existing
objects into objects-before~reuse. Both efforts together are aimed at bridging the gap between the
project in which some objects w;are produced and the projects in which they are intended to be
reused. The inclusion of a generic package 'buffer.ada’ into the repository instead of specific
instances 'integer_buffer.ada’ and ’'real-buffer.ada’ requires some up-front transformation (i.e.,
abstraction). The advantage of creating an object ‘buffer.ada’ is that it reduces the project—

specific cost of creating object ’string_buffer.ada’ (or any other buffer for that matter) and

- 27 ~

3-29
6109

quantifies the cost of modification.

Finding the appropriate characteristics for objects—before-reuse to minimize project-specific
reuse costs requires a good understanding of future reuse needs {objects—after—reuse) and the reuse
processes to be employed (reuse process). The more one knows about future reuse needs within an
organization, the better job one can do of populating a repository. For example, the object—
before-reuse characteristics of Ada generics in Table 2 were derived from the corresponding
object-after—reuse and reuse process characteristics in Tables 3 and 4. It would have made no
sense to include Ada generics into the experience base that (i) are not based on the same instan-
tiation parameters as all anticipated objects-after-reuse because modification is assumed via
parameterized instantiation, (i) do not exhibit high reliability and performance, and (iii) have not
the same solution domain except we understand the implication of different solution domains.
Without any knowledge of the object—after-reuse and reuse process characteristics, the task of
populating a reuse repository is about as meaningful as investing in the mass—-production of con-
crete components in the area of civil engineering without knowing whether we want to build

bridges, town houses or high—rise buildings.

8. A REUSE-ORIENTED SOFTWARE ENVIRONMENT MODEL

Effective reuse according to the reuse—oriented software development model depicted in Fig-
ure 2 of Section 2 needs to take place in an environment that supports continucus improvement,
i.e‘., recording of experience across all projects, appropriate packaging and storing of recorded
experience., and reusing existing experience whenever feasible. Figure 6 depicts such an environ-

ment model.

6109

Reuse—Oriented Software Environment Model

Organizational Process Model

characterize plan execute

select SW Development

Process Model
methods & tools

identify : '
set for construction construct
project :
L. goals select
characteristics
methods & tools analyze

for analysis

RecoMeuse

» bequg-”. o

reuse:

Experience Base

Each project is performed according to an organization process model based on the

Figure 6: Reuse—Oriented Software Environment Model

improvement paradigm {2, 5|:

1. Characterize: Identify characteristics of the current project environment so that the

6109 -

appropriate past experience can be made available to the current project.

(3]

. Plan: (A) Set up the goals for the project and refine them into quantifiable questions and
metrics for successful project performance and improvement over previous project performances
(e.g., based upon the goal/question/metric paradigm [6]).

(B) Choose the appropriate software development process model for this project with the sup-
porting methods and tools ~ both for construction and analysis.

3. Execute: (A) Construct the products according to the chosen development process model,

methods and tools.
(B) Collect the prescribed data, validate and analyze it to provide feedback in real-time for
corrective action on the current project.

4. Feedback: (A) Analyze the data to evaluate the current practices, determine problems, record

findings and make recommendations for improvement for future projects.

(B) Package the experiences in the form of updated and refined models and other forms of

structured knowledge gained from this and previous projects, and save it in an experience base

so it can be available to future projects.

The experience base is not a passive entity that simply stores experience. It is an active
organizational entity in the context of the reuse-oriented environment model which - in addition
to storing experience in a variety of repositories - involves the constant modification of experience
to increase its reuse potential. It plays the role of an organizational “server® aimed at satisfying
project—specific requests effectively. The constant collection of measurement data regarding
object.s-aftter—reuse and the reuse processes themselves enables the judgements needed to populate
the experience base effectively and to select the best suited objects-before-reuse to satisfy
project-specific reuse needs based upon experiences. The organizational process model based on
the improvement paradigm supports the integration of measurement—based ‘analysis and construc-

tion.

- 30 -

6109

For more detail about the reuse—oriented environment model, the reader is referred to (7).

7. CONCLUSIONS

The model-based reuse characterization scheme introduced in this paper has advantages
over existing schemes in that it (a) allows us to capture the reuse of any type of experience, (b)
distinguishes between objects-before-reuse, objects-after—reuse, and the reuse process itself, and
(c) provides a rationale for the chosen characterizing dimensions. In the past most the scope of

reuse schemes was limited to objects-before-reuse.

We have demonstrated the advantages of such a model-based scheme by applying it to the
characterization of example reuse scenarios. Especially its usefulness for evaluating the cost of

reuse and planning the population of reuse repositories were stressed.

Finally, we gave a model how we believe reuse should be integrated into an environment
aimed at continuous improvement based on learning and reuse. A specific instantiation of such
an environment, the 'code factory’, is currently being developed at the University of Maryland
12]. In order to make reuse a reality, more research is required towards understanding and con-

L

ceptualizing activities and aspects related to reuse, learning and the experience base.

8. ACKNOWLEDGEMENTS

We thank all our colleagues and graduate students who contributed to this paper, especially

all members of the TAME and CARE project.

- 31—

6109

9. REFERENCES

(1]

(2]

(3]
(4]

(5]

(6]

7l

(8]

(9]

[10]

(11]

[12]

(18]
(14]
(18]

[18]
[17]

6109

V. R. Basili, “Can We Measure Software Technology: Lessons Learned from Eight Years of
Trying®, in Proc. Tenth Annual Software Engineering Workshop, NASA Goddard Space
Flight Center, Greenbelt, MD, December 1985.

V. R. Basili, “Quantitative Evaluation of Software Methodology", Dept. of Computer
Science, University of Maryland, College Park, TR-1519, July 1985 (also in Proc. of
the First Pan Pacific Computer Conference, Australia, September 1986].

V. R. Basili, "Viewing Maintenance as Reuse-Oriented Software Development®, [EEE
Software Magazine, January 1990, pp. 19-25. :

V. R. Basili and H. D. Rombach, *Tailoring the Software Process to Project Goals and
Environments*, Proc. of the Ninth International Conference on Software Engineer-
ing, Monterey, CA, March 30 - April 2, 1987, pp. 345-357.

V. R. Basili and H. D. Rombach, “TAME: Integrating Measurement into Software
Environments®, Technical Report TR-1764 (or TAME-TR-1-1987), Dept. of Computer
Science, University of Maryland, College Park, MD 20742, June 1987.

V. R. Basili and H. D. Rombach "The TAME Project: Towards Improvement-Oriented
Software Environments”, [EEE Transactions on Software Engineering, vol. SE-14, no. G,
June 1988, pp. 758-773.

V. R. Basili and H. D. Rombach, "Towards a Comprehensive Framework for Reuse: A
Reuse-Enabling Software Evolution Environment*, Technical Report (UMIACS-TR-88-92,
CS-TR-2158), Department of Computer Science, University of Maryland, College Park,
MD 20742, December 1988.

V. R. Basili and R. W. Selby, “Comparing the Effectiveness of Software Testing Stra-

tegies®, [EEE Transactions on Software Engineering, vol.SE-13, no.12, December 1987,
pp.1278-1296.

V. R. Basili and M. Shaw, "Scope of Software Reuse", White paper, working group on
'Scope of Software Reuse’, Tenth Minnowbrook Workshop on Software Reuse, Blue
Mountain Lake, New York, July 1987 (in preparation).

V. R. Basili and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering
Data*, [EEE Transactions on Software Engineering, vol.SE-10, no.3, November 1984,
pp.728-738.

Ted Biggerstaff, "Reusability Framework, Assessment, and Directions*, [EEE Software
Magazine, March 1987, pp.41—49.

G. Caldiera and V. R. Basili, "Reengineering Existing Software for Reusability”, Technical
Report (UMIACS-TR-90-30, CS-TR-2419), Department of Computer Science, University
of Maryland, College Park, MD 20742, February 1990.

P. Freeman, “Reusable Software Engineering: Concepts and Research Directions”, Proc.
of the Workshop on Reusability, September 1983, pp. 63-76.

R. Prieto-Diaz and P. Freeman, "Classifying Software for Reusability”, [EEE Software,
vol.4, no.l, January 1987, pp. 6-16.

[EEE Software, special issue on 'Reusing Software’, vol.4, no.1, January 1987.
IEEE Software, special issue on "Tools: Making Reuse a Reality’, vol.4, no.7, July 1987.

G. A. Jones and R. Prieto-Diaz, *Building and Managing Software Libraries*, Proc. Comp-
sac’88, Chicago, October 5-7, 1988, pp. 228-236.

- 32 -

6109

A. Kouchakdjian, V. R. Basili, and S. Green, "The Evolution of the Cleanroom Process in
the Software Engineering Laboratory*, IEEE Software Magazine (to appear 1990).

F. E. McGarry, “Recent SEL Studies”, in Proc. Tenth Annual Software Engineering
Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, Dec. 1985.

R. W. Selby, Jr., V. R. Basili, and T. Baker, »CLEANROOM Software Development: An
Empirical Evaluation*, [EEE Transactions on Software Engineering, vol. SE-13, no. 9,
September 1987, pp.1027-1037.

Mary Shaw, "Purposes and Varieties of Software Reuse”, Proceedings of the Tenth
Minnowbrook Workshop on Software Reuse, Blue Mountain Lake, New York, July,
1987.

T. A. Standish, "An Essay on Software Reuse", IEEE Transactions on Software
Engineering, vol. SE-10, no. 5, September 1934, pp-494—497.

W. Tracz, "Tutorial on 'Software Reuse: Emerging Technology’", IEEE Catalog Number
EHO278-2, 1988.

J. Valett, B. Decker, J. Buell, "The Software Management Environment”, in Proc. Thir-
teenth Annual Software Engineering Workshop, NASA/Goddard Space Flight Center,
Greenbelt, MD, November 30, 1988.

M. V. Zelkowitz (ed.), *Proceedings of the University of Maryland Workshop on
"Requirements for a Software Engineering Environment’, Greenbelt, MD, May 1986",
Technical Report TR-1733, Dept. of Computer Science, University of Maryland, Col-
lege Park, MD 20742, December 1986 [to be published as a book, Ablex Publ., 1988].

- 33 -

oftware

Viewing Maintenance
as Reuse-Oriented
Software Development

Treating maintenance |
as a reuse-oriented
development process
provides a choice of
maintenance
approaches and
improves the overail
evolution process.

January 1990

Victor R. Basill, University of Maryiand at College Park

developed with the goal of maximiz-

ing the reuse of experience in the
form of knowledge, processes, products,
and tools, the maintenance process is log-
icallv and ideally suited to a reuse-on-
ented development process. There are
many reuse models, but the key issue is
which process model is best suited to the
maintenance problem at hand.

In this article, [present a high-evel or-
ganizational paradigm for deveiopment
and maintenance in which an organiza-
tion can learn from development and
maintenance tasks and then apply that
paradigm to several maintenance process
models. Associated with the paradigm isa
mechanism for setting measurable goais
50 you can evaluate the process and the
product and learn from experience.

If you believe that software should be

An earfierversion of this article was given asthe kevnowe:

Cofs .
e on M

0740-7459/90/0100/0019/501.00 © 1990 IEEE

Maintenance models

Most software svstems are compiex. and
modification requires a deep un-
derstanding of the functional and non-
functional requirements. the mapping of
functions to system components. and the
interaction of components. Withoutgood
documentation of the requirements. de-
sign. and code with respect to tuncuon,
traceability, and structure, maintenance
becomes a difficult. expensive, and error-
prone task. As early as 1976, Les Belady
and Manny Lehman reported on the
problems with the evolution of IBM
0S/360." The literature is filled with sim-
ilar examples.

Maintenance comprises several types of
activides: correcting faults in the system.
adzpting the system to achanging operat-
ing environment (such as new terminals
and operating-system modifications), and
adapting the system to changes in the
original requirements. The new system is

19

|

6109

0ld system New system
Requirements Requirements —s——
II:)eann ll)qu.___
(I:ade Code
Test Tet
Figure 1. Quick-fix process model.
0ld system New systam
Requirsments Requirements
llJesiqn g)siqn
(‘Ioda (':oda
Tt -
Lnalysis Illnalysis
Figure 2. Interative-enhancement model.
Oid system Repository New systsm
Requirements —e- (Ri) = Requirements
tllesicn () B g)asiqn
(I:ode (CI) —mem é:ode
Test (T) e Test
Figure 3. Full-reuse modei.

like the old svstem, yetitisalso differentin
a specific set of characteristics.

You can view the new version of the sys-
tem as a modificadon of the old system or
asa new system thatreuses many of the old
system’s components. Although these wo
views have many aspects in common, they
are very differentin how you organize the
maintenance process, the cffects on fu-
ture products, and the support environ-
ments required.

Consider the following three mainte-
nance process models:

» the quick-fix model,

¢ the iteratve-enhancementmodei. and

¢ the fuil-reuse model.

All three models reuse the old system
and so are reuseoriented. Which model
you choose for a particular modificaton is
determined by a combination of manage-
ment and technical decisions that depend
on the characteristics of the modification,
the future evoludion of the product line,
and the support environment available.

Each model assumes that there isa com-
plete and consistent set of documents de-

20

6109

scribing the existing system, from require-
ments through code. Although this may
be a naive assumption in practice. a side
effect of this article’s presentation shouid
be to motivate organizatons to gain the
benefits of having such documentadon.

Quick-fix model. The quick-fix model
represents an abstraction of the typicalap-
proach to software maintenance. In the
quick-£fix model, you take the existing sys-
tem, usually just the source code, and
make the necessary changes to the code
and the accompanying documentation
and recompile the system as a new ver-
sion. This may be as straighdorward as a
change to some internal component, like
an error correction involving a single
component or a swructural change oreven
some functional enhancement

Figure | demonstrates the flow of
change from the old system's source code
to the new version's source code. It is as-
sumed — but not always true — that the
accompanying documentation is also up-
dated. You can view this model as reuse-
oriented, since you can view the model as
creating a new system by reusing the old
svstem or as simply modifving the old svs-
tem. However, viewing it in a reuse orien-
tation gives you more freedom in the
scope of change than viewing it in a modi-
ficaton or patch orientation.

Iterativeenhancement madel. lterative
enhancement is an evoiutonary model
proposed for development in environ-
ments where the complete set of require-
ments for a svstem was not fuily un-
derstood or where the developer did not
know how to build the full system. Al-
though iterative enhancement was pro-
posed as a development mode, it is well
suited to maintenance. It assumes a com-
plete and consistent set of documents de-
scribing the system. The iterative-en-
hancement model

« starts with the existing system’s re-
quirements, design, code, test, and analy-
sisdocuments;

* modifies the set of documents, sartng
with the highestdevel document affected
by the changes, propagating the changes
down through the fuil set of documents;
and

¢ at each step of the evolutionary pro-

cess, lets vou redesign the system, based.
on analysis of the exisdng system.

The process assumes that the mainte-
nance organizaton can analvze the exist-
ing product, characterize the proposed
set of modifications, and redesign the cur-
rent version where necessary for the new
capabilides.

Figure 2 demonstrates the flow of
change from the highestlevel document
affected by the change through the low-
est-level document This model supports
the reuse orientation more explicidy. An
environment that supports the iterative-
enhancement model clearly supports the
quick-fix model.

Full-reuse model. While iterative en-
hancement starts with evaluating the ex-
isting system for redesign and modifica-
tion, a fuil-reuse process model sturts with
the requirements analvsis and design of
the new system and reuses the appropri-
ate requirements. design, and code from
any earlier versions of the old svstem. [t
assumes a repository of documents and
components defining earlier versions of
the current svstem and similar svstems.
The full-reuse model

* starts with the requirements for the
new system. reusing as much of the old
system as feasible, and

* builds a new system using documents
and components from the old system and
from other systems available in vour re-
pository; vou develop new documentsand
components where necessarv.

Here, reuse is explicit, packaging of ex-
isting components is necessary, and analy-
sis is required to select the appropriate
components.

Figure 3 demonstrates the flow of vari-
ous documents into the various docu-
ment repositories (which are ail part of
the larger repository) and how those re-
positories are accessed for documents for
the new development. There is an as
sumption that the items in the repository
are classified according to a variety of
characteristics, some of which | describe
later in the ardcle.

This repository may contain more than
just the documents from the eartier sy
tem — it may contain documents from
earlier versions, documenss from other
products in the product line, and some

IEEE Software

generic reusable forms of documents. An
environment that supports the full-reuse
mode! clearly supports the other two
modeis.

Model differences. The difference be-
tween the last two approaches is more one
of perspective than style. The full-reuse
model frees you to design the new sys-
tem’s solution from the set of solutions of
similar svstems. The iterative-enhance-
ment model takes the lust version of the
current system and enhances it.

Both approaches encourage redesign,
but the full-reuse modet offers a broader
set of items for reuse and can lead to the
development of more reusable compo-
nents for future systems. By contrast, the
iterative-enhancement model encourages
you to tailor existing systems to get the ex-
tensions for the new system.

Reuse framework

The existence of muitpie maintenance
models raises several questions. Which is
the most appropriate model for a particu-
lar environment? a particular system? a
particular set of changes? the task at
hand? How do you improve each step in
the process model you have chosen? How
do vou minimize overall cost and maxi-
mize overall quality?

To answer these questions, you need a
model of the object of reuse, a model of
the process that adapts that object to its
target application, and a model of the re-
used object within its warget applicauon.
Figure 4 shows a simpie model for reuse.
In this model, an object is any software
process or product and a transformation
is the set of actvides performed when re-
using that object.

The model stepsare

« identfying the candidate reusable
piecesof the old object,

¢ undersianding them,

¢ modifving them to your needs, and

* integradng them into the process.

To flesh out the model, you need a
framework for categorizing objects, rans-
formations, and their context. The frame-
work should cover various categories. For
exampile. is the object of reuse 2 processor
a product? In each category, there are
various classification schemes for the
product (such as requirements docu-

January 1990

6109

Context _
Old object Transformation [——= New object
Repository
Figure 4, Simple reuse model.

ment, code module, and test plan) and
for the process (such as cost estimaton,
risk analysis, and design).

Framework dimensions. There are a
variety of approaches to classifving reus-
able objects, most notably the faceted
scheme offered by Ruben Prieto-Diaz and
Peter Freeman.’ [offer here ascheme that

I offer here a scheme
that categorizes three
aspects of reuse: the
reusable object, the
reusable object’s
context, and the process
of transforming
that object.

categorizes three aspects of reuse: the re-
usable object, the reusable object’s con-
text. and the process of transforming that
object. This scheme owes much to ideas
presented at the 1987 Minnowbrook
Workshop on Software Reuse.

Object dimensions include:

* Reuse-object type. Whatisa character-
ization of the candidate reuse object?
Sample process classifications include a
design method and a test technique;
product classifications include source
code and requirements documents.

* Seifcontainedness. How independent
and understandable is the candidate ob-
ject? Sample classifications include syn-
tactic independence (such as a daa-cou-
pling measure) and specification
precision .(such as functional notadon
and English).

* Reuse-object quality. How good is the
candidate reuse object? Sample classifica-
uons include mawrity (such as the num-
ber of systems using it), complexity (such
as cvelomatic complexity), and reliability

(such as the number of failures dunng
previous use).

Context dimensionsinclude:

¢ Requirements domain. How simiiar
are the requirements domains of the can-
didate reuse object and the current proj-
ect? Sampie classificadons are application
(such as ground-support sottware for sat-
eilites) and distance (such as same appli-
cation or similar algorithms but different
problem focus).

¢ Solution domain. How similar are the
evolution processes that resulted in the
candidate reuse objects and the ones used
in the current project’ Sample classifica-
tions are process model (such as the
waterfall model}, design method (such as
funcdon decomposition), and language
{such as Fortran).

¢ Knowledge-transter mechanism. How
is informaton about the candidate reuse
objects and their context passed to cur-
rentand future projects? People, such asa
subset of the development team, provide
a common knowiedge-transfer mecha-
nism.

Transformationdim nsions include:

e Transformation tvpe. How do vou
characterize wransformation activities?
Sample classifications include percent of
change required. direction of change
(such as general to domain-specific or
project-specific to domain-specific). mod-
ification mechanism (such as verbaum,
parameterized, template-based. or un-
constrained), and identfication mecha-
nism (such as bv name or by functional
requirements).

® Activity integration. How do vou inte-
grate the transformation activities into the
new system development® One sample
classification is the phase where the acuv-
ity is performed in the new development
{for example, planning, requirements de-
velopment, and design).

¢ Transformed quality. What is the con-
tribudon of the reuse object to the new
system compared to the objectives set for
it? Sample classifications are reliability
(such as no failures associated with that
component) and performance (such as
sausfving a iming requirement).

21

Comparing the modeis. When appiving
the reuse framework to maintenance, the
set of reuse objects is a set of product doc-
uments. You compare the models to see
which is appropriate for the current set of
changes according to the framework’s
three dimensions.

First consider the reuse-object dimen-
sion:

The objects of the quick-fix and itera-
tive-enhancement modeis are the set of
documents representng the old system.
The object of the full-reuse model is any
appropriate document in the repository.

For self-<containedness, all the models
depend on the unit of change. The quick-
fix model depends on how much evolu-
ton has taken place, since the system may
have lost structure over time as objects
were added, modified. and deleted. In it
erative enhancement, the evolved sys
tem’s structure and understandability
should improve with respect to the appli-
cation and the classes of changes made so
far. In the full-reuse model. the evolved
system's structure, undersandability, and
generality should improve: the degree of
improvement will depend on the quality
and maturity of the repository.

For reuse-object quality, the quick-fix
model offers litde knowledge about the
old object’s qualitv. In iterative enhance-
ment, the analysis phase provides a fair as-
sessment of the svstem'’s quality. [n full
reuse, you have an assessmenc of the reuse
object’s quality across several systemns.

Now consider the contextdimensions:

For the requirements domain, the
quick-fix and iterative-enhancement
models assume that you are reusing the
same application — in fact, the same proj-
ect. The full-reuse model allows manage-
able variation in the application domain,
depending on what is availabie in the re-
pository.

For the solution domain, the quick-fix
model assumes the same solution struc-
ture exists during maintenance as during
development. There is no change in the
basic design or szructure of the new sys-
tem. In iterative enhancement, some
modification to the solution soructure is
allowed because redesign is a part of the
model. The full-reuse model allows major
differences in the solution saructure: You

2

6109

can completely redesign the svstem from a
structure based on functional decomposi-
tion to one based on objectoriented de-
sign. for example.

For the knowledge-transfer mechanism,
the quick-fix and iterative-enhancement
models work best when the same peopie
are developing and maintining the sys-
tem. The full-reuse model can compen-
sate for having a different team, assuming
that vou have application specialists and a
well-documented reuse-object repository.

The quick-fix model’s
weaknesses are that the
modification is usually a

patch that is not
welldocumented, partly
destroying the system
structure and hindering
future evolution.

Last. consider the transformation di-
mension:

For the transformation tvpe. the quick-
fix model typically uses activities like
source-code lookup. reading for un-
derstanding, unconstrained modifica-
tion, and recompilation. lterative en-
hancement typically begins with a search
through the highestdevel (most abstract)
document affected by the modification.
changing it and evolving the subsequent
documents to be consistent, using several
modification mechanisms. The full-reuse
mode! uses a library search and several
modification mechanisms: those selected
depend on the type of change. In full
reuse, modification is done off-line.

For activity integration, all activities are
performed at same time in the quick-fix
model. [terative enhancement associates
the activities with all the normal develop-
ment phases. In full reuse, you identify the
candidate reusable picces during project
pianning and perform the other activities
during development.

For transformed quality, the quick-fix

model usually works best on small, weil-
contained modifications because their ef-
fects on the svstem can be understood and
verified in context. [terative enhance-
ment is more appropriate for larger
changes where the analvsis phase can pro-
vide better assessment of the full effects of
changes. Full reuse is appropriate for
large changes and major redesigns. Here,
analvsis and performance history of the
reuse objects support quality.

Applying the models. Given these differ-
ences. vou can analvze the maintenance
process modeis and recommend where
they might be most applicable.

But first, consider the relationship be-
tween the development and maintenance
process models: You can consider devei-
opment to be a subset of maintenance.
Maintenance environments differ from
deveiopment environments in the con-
straints on the solution. customer de-
mand. timeliness of response, and organi-
zauon.

Most maintenance organizations are set
up for the quick-fix model but not for the
iteradve-enhancement or full-reuse mod-
eis. since they arc responding to tmeli-
ness — a svstern failure needs to be fixed
immediatelv or a customer demands a
modification of the system’s functionalie.
This is best used when there is little
chance the svstem will be modified again.

Clearly, these are the quick-fix modei’s
strengths. But its weaknesses are that the
modification is usuallv a patch that is not
well-documented. the structure of the sys
tem has been partly deswoved, making fu-
ture evoluton of the system difficult and
error-ridden, and the model is not com-
patible with development processes.

The iterative-enhancement model al-
lows redesign that lets the system struc-
ture evoive making future modifications
casier. [t focuses on making the system as
good as possible. It is compatibie with de-
velopment process models. [tisagood ap-
proach 0 use when the product will have
a long life and evoive over gme. In this
case, if timeliness is also a constraint. you
can use the quickfix model for patches
and the iterative-enhancement modet for
long-term change, replacing the patches.
The drawbacks are that it is a more costlv
and possibly less timely approach (in the

IEEE Software

short run) than the quick-fix model and
provides lite support for generic compo-
nents or future, similar systems.

The full-reuse model gives the main-
tainer the greatest degree of freedom for
change, focusing on long-range develop-
ment for a set of products, which has the
side effect of creating reusable compo-
nents of all kinds for future develop-
ments. [t is compatible with development
process models and., in fact, is the way de-
velopment modeis shouid evolve. It is best
used when vou have multiproduct envi-
ronments or generic development where
the product line has a long life. Its draw-
back is that it is more cosdy in the short
run and is not appropriate for small mod-
ifications (aithough vou can combine it
with other models for such changes).

My assessment of when to apply these
models is informal and intuidve, since itis
a qualitative analysis. To do a quantitative
analvsis, you wouid need quantitative
models of the reuse objects, trans
formauons, and context. You would need
a measurement framework to character-
ize (via classificadon), evaluate. predict.
and motvate management and technical
decisions. To do this. you would need to
apply to the models a mechanism for gen-
erating and interpreting quantitative
measurement, like the goai/ques
tion /metric paradigm.*® (See the box on
p. 24 for a description of this paradigm
and its application to choosing the appro-
priate maintenance process model.)

Reuse enablers

There are many support mechanisms
necessary to achieve maximum reuse that
have not been sufficiendy emphasized in
the literature. In this article, I have pre-
sented several: a set of maintenance mod-
els, a mechanism for choosing the appro-
priate modeis based on the goals and
characteristics of the problem at hand,
and a measurement and evaluation mech-
anism. To support these activities, there is
aneed for an improvement paradigm that
helps organizations evaluate, learn, and
enhance their software processes and
producs, a reuse-oriented cvolution envi-
ronment that encourages and supports
reuse, and automated support for both
the paradigm and environment as weil as
for measurement and evaluation.

January 1990

6109

Improvement paradigm. The improve-
ment paradigm® is a high-evel organiza-
tional process model in which the organi-
zation learns how to improve its products
and process. In this model, the organiza-
tion should learn how to make better deci-
sions on which process model to use for
the maintenance of its future products
based on past performance. The para-
digm has three parts: planning, analysis,
and learning and feedback.

In planning, there are three integrated

In the improvement
paradigm, organizations
shouid learn how to make
better decisionson
which process model to
use for the maintenance
of its future products
based on past
performance.

activities that are iteratively applied:

¢ Characterize the current project envi-
ronment to provide a quantitative analysis
of the environment and a model of the
project in the context of that environ-
ment. For maintenance, the characteriza-
tion provides productdimension data,
change and defect data, cost data and
customer-context daa for earlier versions
of the svsterm. information about the
classes of candidate components availabie
in the repository for the new system, and
any feedback from previous projects with
experience with different models for the
types of modifications required.

® Set up goals and refine them into
quantifiable quesdons and metrics using
the goal/question/metric paradigm to
get performance that has improved com-
pared to previous projects. This consists of
a top-down analysis of goals that iterauvely
decomposes high-level goalsinto detailed
subgoals. The iteration terminates with
subgoals that you can measure directly.

¢ Choose and tailor the appropriate

consuruction model for this project and
the supporting methods and tools 10 sat-
isfy the project goals. Understanding the
environment quantitatively lets you
choose the appropriate process model
and fine-tune the methods and tools
needed to be most effective. For exampie,
knowing the effect ot earlier applications
of the maintenance models and methods
in creating new projects from old systems
lets vou choose and fine<tune the appro-
priate process model and methods that
have been most effective in creating new
svstems of the tvpe required from oider
versions and component parts in the re-
pository.

In analysis, vou evaluate the current
practices, determine problems. record
the findings, and make recommendations
for improvement. You must conduct data
analvsis during and after the project. The
goal/question/ metric paradigm lets vou
trace from goals to metrics and back.
which letsyou interpret the measurement
in context to ensure a focused. simpier
analvsis. The goal-driven operational
measures provide a framework for the
kind of analvsis vou need.

In learning and feedback. vou organize
and encode the quandtative and qualita-
tive experience gained from the current
project into a corporate information base
10 help improve planning, development,
and assessment for future projects. You
can feed the results of the anaivsis and in-
terpretation phase back to the organiza-
tion to change how it does business based
on explicitly determined successes and
failures.

In this way, you can learn how to im-
prove quality and productivityand how to
improve goal definition and assessment.
You can start the next project with the ex-
perience gained from this and previous
projects. For example, undersanding the
problems associated with each new ver-
sion of a system provides insights into the
need for redesign and redevelopment.

Reuse-oriented environment. Reuse
can be more effectively achieved in an en-
vironment that supports reuse. (See the
article by Ted Biggerstaff and Charles
Richter’ for 2 set of reusability tech-
nologiesand the article by myseif and Die-
ter Rombach? for a set of environment

23

Goal/question/metric paradigm

The goalquestiorvmetnic paradigm represents a systematic ap-
proach for setting project goals (tailored to the needs of an organi-

" zation) and defining them in an operatonal, tractable way. Gaals

are associated with a set of guanitifiable questions and modeis that
specily metrics and data for collection. The tractability of this soft-
ware-engineering process supports the analysis of the coilected
data and computed metrics in the appropriate context of the ques-
tions, models and goais, feedback (by integrating constructive and
analytic activities), and leaming (by defining the appropriate syn-
thesis procedure for lower lavel into higher level preces of experi-
ence.)

The goals are defined in terms of purpose (why the project is
being analyzed), perspective (the models of interest and the point
of view of the analysis), and the environmant (the context of the
project). When measuring a product of process, you ask questions
in three general categories:

« product or process definition,

- definition of the quality perspectives of interest, and

« feedback.

Product definition includes physical attnbutes of the product,
cost, changes and defects, and the contextin which the product will
be used. Process definition includes a modet of the process, an
gvaluation of conformance to the model. and an assessment of the
project-specific documents and experience with the application.

Definition of the quality perspectives of interestinciudes the quak
ity models used (such as reliabiity and user friendliness) and the
interpretation of the data collected reiative to the modets.

Feedback invoives the retum of information for improving the
product and process based on the quality perspactive of interest.

The following is an informal application of the goal/questiorvmet-
fic paradigm 1o a particular maintenance problem. The answers to
some of the questions are obvious. The answers {0 others assume
adatabase of experience that management must estmate ifitis not
available.

Goais. The goal-definition phase has three pars:

- Purpose: Analyze the new product requirements to determine
the appropnate evolution model.

+ Perspecyve: Examine the cost of the curent enhancement and
future evolstion of the system from the organization's point of view.

« Environment: Along with the standard environmental factors,
like resource and problem factors, you would like to pay specal
attention to the context dimensions in the reuse framework.

In the requirements domain, you typically use product objects
from the same application domain, atthough you can choose ob-
jects from other domains in the repository, if they are generally
applicable.

The solution domain defines the process modeis, methods, and
tools used in the development ot the old product. !f you plan to use
the same processes for the evolving product, there 1s no problem
with reuse. if future evolution dictates changes to the solution do-
main, the full-reuse modet lets you make these changes, but at the
cost of reusing less of the old product.

For knowiedge-transfer mechanism, you must determine what
form of documentation is needed o transfer the required appiica-
tion, process, and product knowiedge to the maintainers. i the
mainmancomisthesamasmodavebpmemgmup.m
major transfer mechanism is the people.

Praduct definition. With the goal defined, you then define your
product. Inﬂﬁempb,mmmm:mempmd-
uct 1o be built (the new version of the system), the old versions, and
any other relevant objects in the repository that may be reused.

For the category of physical artnbutes, sample questions are:

How many requirernents are thera for the new system? What is
the mapping of the requirements to system componentsin the old
system? How independent are the components ta be modified in
the okd system? What is the complexity of the old system and its
individual components? What candidate objects are available in
the repository and what are their object, context, and transforma-
tion classifications? How many new reguirements, categorized
by class (such as size, type. and whether it is a new, modified, or
delated requirement) are there that are not in the old system?
How many components, categorized by class (such as size and
type of change) in the old system must be changed. added, and
deleted?

For the category of changes and defects, sampie questions are:
How many errors, faults, and failures {categonzed by ciass) are
there associated with the requirements and components that need
to be changed? Whatis the profile of past and future changes to the
system, categarized by class (such as cost and number of times a
component has been and must be changed)?

For the category of cost, sample questions are: What was the
cost of the onginal system? What was the cost of each prior ver-
sion? What is the cost of each prior requirement change by class?
What is the estimated cost of modifying the oid system to meet the
new requirements? What is the estimated cost of buiding a new
system. reusing the experience and pars of the old system and the
repasitory?

For the category of customer comext. sample questions are:
What are the various customer classes and how are they using the
system? What are the estimated future enhancements based on
your analysis of customer profiles, past modficanons, and the state
of technology in the application domain?

Quaiity perspective of interest. With the product defined, you
now define the perspectives for the qualities that you are trying 10
achieve.

You shouid make a mode of the system’s evolution, along withits
associated costs. Based on the data from the evolution of this sys-
tem and cther systems, as weli as on the charactenistics of the set
aof new requirements, the modei should let you estimate the cost
and benefits associated with each of the three process modets and
let you choose the appropriate one. Parametars for the model wil
include such items as the projected system lifeeme. the number ot
future related systems, and the projected cost of changes for van-
ous classes of requirements.

Feedback. With the quaiity perspectives detined, you can now
get the nformation needed tc improve the product o Process. The
teedback should provide with deeper insights into the model and
our environment.

Sample questions include: Is the model appropniate? How can
the model be improved? How can the classifications be improved?

Other goais. There are many relevant goals. Consider the fo-
lowing examples:

« Evajuate the modification activities in the reuse modei to im-
prove them. Examine the cost and cormectness of the resuiting ob-
jects from the customer’s point of view.

- Evaluate the components of the existing system to determine
whetherto reuse them. Exammine their independence and funchonal
appropriateness from the viewpoint of reuse in future systems.

« Precict the ability of a set of code components ta be integrated
into the curent system from the developer's point of view.

« Encourage the reusa of a set of repository components built for
reuse. Examine the reward structure from the manager's and
developer's points of view.

24 |EEE Software

6109

characteristics.) Software-engineering en-
vironments provide such things as a proj-
ect daabases and support the interaction
of people with methods, wols, and project
data. However. experience is not con-
wrolied by the project database nor owned
by the organizadon —- so reuse exists only
implicidy.

For effective reuse, you need to be able
to incorporate the reuse process model in
the context of development. You need to
combine the development und mainte-
nance models to maximize the context di-
mensions. You need to integrate charac-
terization. evaluation, prediction. and
motivation into the process. You need to
support learning and feedback 1o make
reuse viable. | propose that the reuse
model can exist in the context of the im-
provement paradigm, making it possible
to support all these requirements.

Automated support. The improvement
paradigm and the reuse-oriented process
model require automaied support for the
dawbase. encoded experience. and the
repository of previous projects and reus-
able components. A special issue of /EEE
Software® offered a set of automated and
automatable technologies for reuse. You
need to automate as much of the mea-
surement process as possible and to pro-
vide a tool environment for managersand
engineers to develop project-specific
goals and generate operational defini-
tions based on these goals that specify the
metrics needed for evaluation. This evalu-
adon and feedback cannot be done in real
time without automated support.

Furthermore, automated support will
help in the posumortem analysis. For ex-
ample, a system like Tailoring a Measure-
ment Environment.’ whose goal is w0 in-
stantiate and integrate the improvement
and goal/question/metric paradigms
and help wilor the development process,
can heip support the reuse-oriented pro-
cess model because it contains mecha-
nisms to support systematc leamning and
reuse.

Applying the TAME concept to mainte-
nance provides a mechanism for choos-
ing the appropriate maintenance process
mode! for a particular project and pro-
vides data to help vou learn how 10 do a
better job of maintenance.

January 1990

6109

he approach you take to mainte-
Tnancc depends on the nature of

the problem and the size and com-
plexity of the modification. Viewing
maintenance as a reuse-oriented pro-
cess in the context of the improvement
paradigm gives you a choice of mainte-
nance models and a measurement
framework. You can evaluate the
strengths and weaknesses of the differ-
ent maintenance approaches, learn how

References
I. L Beiadv and M. Lehman, *A Model of

Large Program Deveiopment, /BM Systems

J.N0.3.1976, pp. 225-252.

V'R. Basili and A.J. Tumner, ~lteradve En-

hancemenc A Practical Technique for

Software Development,” EEE Trmns. Soft-

waretng., Dec. 1975, pp. 390-396.

3. R Prieto-Diazand P. Freeman, "Classifving
Software for Reusability,” [EEE Software, Jan.
1987. pp. 6-16.

4. V.R. Basili, “Quanttacive Evaluation of
Software Methodology,” Tech. Report
1519. Computer Science Dept, Univ. of
Marviand. College Park. Md.. Julv (985,

5. V.R. Basliand H.D.Rombach, “The TAME
Project: Towards Improvement-Oriented
Software Environments,” [EEE Trans. Sofi-

9

Victor R. Basiliis a professor at the University of
Marviand at College Park’s Institute for Ad-
vanced Computer Studies and Computer Sci-
ence Dept. His research interests include mea-
suring and evaluating software develop in
industrial and government settings. He isa
founder and principai of the Software Engi-
neering Laboratory, a joint venture between
the Nadonal Aeronautics and Space Adminis-
tration, the University of Marviand, and Com-
puter Science Corp.

Basili received a BS in mathemauics from

3-42

to refine the various process models, and
create an experience base from which o
support further management and techni-
cal decisions.

[fyou do notadapt the maintenance ap-
proach, you will find it difficuit to know
which process model to use for a partcu-
lar project, whether you are evoiving the
system appropriately, and whether vou
are maximizing quality and minimizing
cost over the system lifetime. >

ware fng., jJune 1988, pp. 758-773.

6. V.R. Basili and D.M. Weiss. “A Methodol-
ogy for Collecting Valid Software-Eng-
Nov. |984, pp. 728-738.

7. V.R. Basili and H.D. Rombach,
“Towards a Comprehensive Framework
for Reuse: A Reuse-Enabling Software-
Evolution Environment,” Tech. Report
UMIACS-TR-88-92, Computer Science
Dept.. Univ. of Maryland, College Park,
Md.. Dec. 1988.

8. T.Biggersafl. “Reusabilitv Framework, As
sessment, and Directions.” ZEE Software,
March 1987, pp. 4149,

9. spedal issue on tools for reuse, ZEE Soft-
ware, July 1987, pp. 6-72.

Fordham Coilege, an MS in mathematics from
Syracuse Universitv, and a PhD in computersc-
ence from the Universitv of TexasatAustin. He
isa member of the IEEE Computer Society and
is editorin-chief of [EEE Transacuons on Software

Enginaming.

Address quesuons about this article to Basili
at Computer Science Dept., A.V. Williams
Bldg., Rm. 4187, University of Marviand, Col-
lege Park, MD 20742,

Copyright :© 1990 The institute of Electrical and Electronics Engineers, Inc. 25
Reprinted with permission from IEEE SOFTWARE,
10662 Los Vaqueros Clrcle, Los Alamitos, CA 90720

ECTION 4 — SOFTWARE L IE

The technical paper included in this section was originally
prepared as indicated below.

"Evolution Towards Specifications Environment:
Experiences With Syntax Editors," M. Zelkowitz,

Information and Software Technology, April 1990

6109

Evolution towards specifications
environment: experiences with syntax editors

MY Zelkowitz

Language-based editors have been thoroughly studied over the
last 10 years and have been found 10 be less effective than orig-
inally thought. The paper reviews some relevant uspects of such
editors, describes experiences with one such editor { Support),
and then describes two current projects that extend the syntax-
editing paradigm to the specifications and design phases of the
software life-cycle.

software design. environmenis, specification, syntax editors

SYNTAX EDITORS

Syntax-editing (or alternatively language-based editing)
is a technique that had its beginning about 20 years ago
(e.g.. Emily") and blossomed into a major research
activity 10 years later (e.g., Mentor?, CPS’). Dunng the
mid-1980s. major conferences were often dominated by
syntax-editing techniques*s. Many of these projects,
however, have since been terminated or have taken a
much lower profile. There are few widely used commer-
cial products that use this technology. Why?

This paper briefly introduces the concept of syntax
editing. describes one particular editor, and explains
some experiences in using it. It is then shown how the
syntax-editing paradigm is powerful but perhaps misap-
plied in the domain of source-program generation.

Just using a syntax editor for source-code production
does not result in significantly higher productivity. By
integrating specification generation with this source-code
production, however, the author believes that increased
productivity can be provided by making more of the life-
cycle visible to the programmer. Two extensions to the
current environment are described that apply syntax
editing within a specifications environment to provide
additional functionality over that of standard syntax
editors.

With a conventional editor. the user may insert an
arbitrary string of characters at any point in a file, and a
later compilation phase will determine if there are any
errors. With a syntax editor. however, only those choices

Department of Computer Science and [Insutute for Advanced
Computer Studies. University of Maryiand. College Park. MD 20742,
USA.

Paper submutied: 27 August {989,

Revised version received: 20 November 1989,

vol 32 no 3 apnl 1990

6109

permitted by the language grammar can be inserted, and
the generation of source program and the processing of
the program’s syntax are intertwined operations. For
example, for the statement nonterminal <stmt>, there
are only a limited set of statement types that are permit-
ted and only those legal strings can be entered by the user
in response to that nonterminal on the screen.

The user interface is a major component of syntax
editors. Depending on editor design, syntactic constructs
can be specified via a mouse and pull-down menus, func-
tion keys on the keyboard, or special editing prompt
commands. If the cursor is pointing to the <stmt>
syntactic unit and the user specifies the if statement, then
the text

if <expr> then
<simt>
else <stmt>

will replace <stmt> on the screen. Each nonterminal
<...> is considered as a single editing character and
syntactic constructs must be added or deleted in their
entirety. In essence, the programmer is building the
source-program parse tree in a top-down manner.

Pure syntax-editing is a simple macro-like substitu-
tion, and such macro substitutions exist in several con-
ventional editors. For example, Emacs and Digital's
LBE (Language Based Editor) both permit such substi-
tutions anywhere in a program. Here, however, editors
that go beyond simpie substitution are being considered.
Screen layout is often specified (e.g. unparsing the pro-
gram tree to a “pretty-printed’ display), semantic infor-
mation is usually checked (e.g., variable declarations,
mixed types), and often the editor is part of an integrated
package or environment of editor, interpreter., and
debugging and testing tools. .

Early on. many advantages of a syntax editor were
stated:

o Source-program generation would be efficient as a

single mouse or function key click would generate an

entire construct.

Productivity would increase as numerous errors such

as missing begin—end pairs could not occur and mixed

mode expressions would immediately be found by the

editor at the point of insertion. Users could more

easily use an unfamiliar language.

e Screen layout would be predefined, providing a
uniform structure to all programs.

0950-5849/90/030191-08) 1990 Butterworth & Co (Publishers) Lid 191

4-2

« The integrated package of tools enables testing and
debugging to proceed more rapidly.

As shall be seen, the last of these reasons does indeed
seem to be true; each of the others, however, seems to
have a serious drawback as well as the supposed benefit.

As an example, the Support environment, designed by
the author, is briefly described as an instance of the
integrated syntax-editing genre®. [t has many of the
features implemented in such tools and is the basis for
the extensions to specifications described later.

Support design

Support is an integrated environment built to process the
CF-PASCAL subset of PASCAL and was used for three
years (until the course contents changed) as the program-
ming tool in the introductory programming course at the
University of Maryland. It runs on both Berkeley Unix
and IBM PC systems.

Design

Major features of Support include the following.

Text inpur Support uses both the command and func-
tion key mechanisms for input. If the cursor (represented
by reverse video) covers the <stmt> unit, a menu at the
bottom of the screen gives the available choices. For
example, to insert an if statement, either a response of ..
or depressing function key 2 (on the PC keyboard) will
insert the if construct.

Support aiso permits textual substitution for any syn-
tactic unit. A user can type in an arbitrary line of char-
acters, and an internal LALR parser builds the subtree
for that construct. If the root of that subtree is permitted
by the current cursor position, then it is attached to the
program tree at that cursor position.

Using either input mechanisms. invalid syntax can
never be entered. Using the menu for input permits oniy
correct responses, and, for textual input, il the parser
cannot resolve the typed-in text to a correct syntactic
unit, an error is displayed and the program is not modi-
fied.

Windows Horizontal windows dividing the CRT screen
are the major interface with the user. Each tool within
Support controls its own window, and from two to four
windows will typicaily be displayed at any one time.
Tools Various tools within Support aid in program
design and development. The relationship among pro-
cedures in a program is handled by the Design window:
an interpreter executes partiaily developed programs and
inciudes features such as variable and statement tracing
and breakdown monitoring. Statement trace and state-
ment coverage windows are part of this structure. Data
are displayed via the variable trace and the run-time
display windows.

As an extension to the textual input mode. a smali (i.e..
size of screen) text editor called the Character Oriented
EDitor (or COED) was implemented. Users insert or
modify arbitrary sequences of characters in this window.
have the text processed by the LALR parser mentioned

192

6109

Table 1. Background of students

Semester 1| Semester 2

First university computer course (%) 73 82
Took this course previously (%) 12 9
Took high-school course (%) 59 55
Never previousiy used computer (%) 26 24
Own microcomputer (%) 49 51

above, and then have the text inserted into the program
tree at the appropriate place in the program. The user
can also pull an arbitrary section of program text into
this window for modification. This also gave an easy cut-
and-paste feature and the ability 10 move sections of
code around in the program as a means to address some
of the syntax-editing deficiencies that turned up.
Language and screen displays The grammar processed
by Support (e.g.. CF-PASCAL) is defined via an external
data file that defines the syntax. some semantics. and
screen layout. This feature turned out to be a major
factor in allowing Support to be extended for other
applications.

Experiences

Support was used from 1986 until 1989 in Computer
Science | by approximately 200 to 300 students each
semester. During the first two semesters data were
collected from the 543 students that enrolled in the
course. The background of the students is summarized in
Table 1. As shown. about 75% had previous experience
with programming and about half own their own
computer.

Based on a | to 5 rating scale (1 = poor), students who
owned their own computer (and presumably had more
experience in programming) rated satisfaction with Sup-
port lower than those without their own computer (2.8 to
3.2). More revealing, students rated Support’s text-edit-
ing capabilities much lower than those of an [BM main-
frame also used during the semester (2.7 versus 3.7 for
one semester, 3.3 versus 3.8 for the other). The author
believes that users with experience with general text
editors felt more restricted by the syntax-editing para-
digm. On the other hand. novices with no previous
experience felt aided by such restrictions.

Students using Support rates its debugging capabilities
higher than those available on the [BM mainframe (3.8
versus 3.1 for one semester, 3.0 versus 2.9 for the other).
The PC system was also rated as more available com-
pared with the mainframe (3.9 versus 1.8 for one semes-
ter, 3.0 versus 2.9 for the other). Other results are pre-
sented elsewhere’.

In summary, syntax editing seems to be viewed as a
restriction on program development. but the integrated
development and testing environment appears to be
desired. A tool that simply develops source text does not
seem to produce a large productivity increase. The
resuits here are comparable to those found with other
editing environments.

information and software technoiogy

Retrospective

After several years of use and several redesigns and
enhancements based on user needs and experiences, the
four advantages claimed for such editors can be
addressed more clearly. As shail be seen, for most of the
advantages, there are some serious problems to over-
come.

Efficient generation of source programs

For entering much of the text of a program, this is true,
but unfortunately there are enough complications to
slow down experienced programmers. For example, the
PASCAL if statement has an optional else clause. Should
the editor automatically insert the else and have the
programmer delete it if not desired, or should it not be
included with the corresponding need to add it if wanted?
Support chose the latter model, but in either case the
editor will be wrong about half of the time.

In Support's case, the screen displays no information
about optional syntactic units, so the user needs to know
where such units are located. There are two modes of
moving forward through a program: the — key moves to
the next syntactic unit displayed on the screen, while the
enter key is similar but will insert any optional phrases
between displayed syntactic units as it moves. [n POE's
case* the opposite occurs. All optional units are dis-
played initially, and the user must delete them if not
specifically wanted. .

A more serious consequence is that syntactic units are
added top-down, but programmers usuaily think of
algorithms as sequential actions. For adding new state-
ments, there is not much difference between sequential
insertion and top-down development of the BNF:

<stmt list> = <stmt> <stmt list> !
<stmt>

as both generate statements in a left-to-right manner.
Insertion of expressions such as A+ B*C, however,
essentially means to build the tree in postfix order (e.g..
CT AT, et BY, C™), which is not the natural
sequence.

In some environments, such as CMU’s Gandalf. this
top-down linking to the program’s parse tree is embed-
ded in the user interface: in Support’s case, however, the
LALR parser mentioned carlier was added. Straight text
will be parsed and entered in its true infix format. The
COED editor within Support was a valuable extension
that permitted programmers to add small sections of
program text (up to 22 lines of input) without violating
the basic top-down nature of program generation in a
syntax editor.

Early detection of syntax and semantic errors

While true. this is not much of a benefit if its conse-
quences are considered. Experienced programmers
generally do not make many syntax errors as they enter
text, aithough novices do. (This might explain Support’s
greater popularity among non-programmers than among
programmers.)

vol 32 no 3 apnl 1990

6109

There are cases where this supposed benefit is actually
a hindrance. If an experienced programmer thinks of a
sequence of code to enter and makes an error in input, a
standard editor will ignore the error and continue enter-
ing data. After finishing entering code, the programmer
can fix the earlier problem. With a syntax editor, how-
ever, only correct syntax can be entered. The system will
usually hait and beep until corrective action is taken.
Thus there is a disruption in a train of thought where
some deep semantic issue needs to be put aside (and
forgotten?) to fix some simple syntax.

Looking at both of these reasons, as languages get
more complex {e.g., ADA) syntax editing might make
more sense, but in relatively simple languages, like PAS-
CAL and C, there seems to be few benefits. There is little
experience with such editors for complex languages. Arc-
turus'® is a prototype of an ADA editor, but it was not
made commercially available.

Screen layout is predefined

This is also true, but again the predefined layout might
not be what the programmer wants in all cases. it cer-
tainly helps the novice generate nicely indented listings.
but as the programming task grows more complex. the
number of special cases increases.

The placement of comments seems to pose a problem
with all such editors. Comments are generally outside the
language's defining BNF. Where do they appear in the
listing? In Support they are tagged before the defining
nonterminal. This works in some cases, but not all.

Uniform debugging and testing tools

This again is true, but a syntax editor is not needed for
this feature. An integrated framework and data reposit-
ory are needed for a source program. The current interest
in CASE (computer-aided software engineering) tools
exemplifies this, and Support is simply a CASE tool with
a syntax editor for a base.

In summary, the experiences with Support are by no
means unique and closely mimic experiences others have
had with syntax editors. For example, Mentor, initially
developed about eight years earlier at INRIA, has had a
similar pattern of development and use''. Similar to
experiences with Support:

o Novices used menus but experienced programmers
rarely did.

Experienced programmers wanted the full-screen
Emacs editor for textual input and modification (pro-
viding functionality similar to the COED editor des-
cribed here) using automatic parsing and unparsing of
the Mentor input.

Switching between Mentor and Emacs was difficuit
due to the inherent problems in placement of
comments. On the other hand, Mentor was a powerful
source-code maintenance system due to the integ-
ration of many program analysis tools for obtaining
semantic information about a program. But just as in
Support’s case, such tools are mostly a function of

193

Mentor being an integrated environment and not
simply an editor.

In conclusion, the drawbacks seem to be as serious as the
advantage in syntax editing, which probably explains
their lack of growth and popularity since the early "80s.
As a final comment, source-code development is often
stated as 15% of total life-cycle costs. Even if the editor
reduced coding time to zero. that would still mean a
productivity improvement of only 15%. Industry is look-
ing for more than that.

SPECIFICATIONS

The previous discussion indicates that while syntax edit-
ing of source programs is a powerful technique, it proba-
bly has minimal effect on programmer productivity. As
requirements, specification and coding take up to 75% of
the costs to develop a system, however. improving those
phases of the life-cycle might have a more dramatic
impact on productivity. In addition, a mechanism to
improve the flow between specifications to design to code
would probably lead to fewer interface errors, hence
decreasing the effort needed in testing and further
increasing improved productivity.

For coding source programs, there are several pro-
gramming techniques: procedural languages (€.g.. PAS-
CAL, C, ADA, COBOL), applicative languages (e.g.. LISP.
PROLOG), object-oriented programming (e.g.. SMALL-
TALK. C+ +), etc. Their relative strengths and weak-
nesses for specific applications are fairly well established.
For specification of a program. there are also several
models (e.g., axiomatic, denotational, algebraic. func-
tional); however. as yet there is no clear consensus as to
which is most effective and how each applies to different
application domains. This is still very much an open
research question, with many ongoing projects studying
various specification strategies.

Given the powerful syntax editing paradigm and its
relative inability at improving source-code generation,
the author decided to investigate it within a specification
domain. After ail, most specification languages have a
syntax and semantics more complex than most program-
ming languages. and some anecdotal data do seem to
indicate that programmers would prefer syntax editors
for sutficiently complex languages.

As stated previously, Support processes a language
defined by an external grammar file, and it is constructed
as a set of independent tools. each writing to virtual
windows that are mapped to the actual computer screen.
By modifying this grammar and by adding new support
tools, Support becomes an interface “shell’ for a series of
integrated environments. [t can be used as a language
processing meta-environment by providing the capabili-
ties to read input, parse text, build parse trees. and
manipulate multiple windows simultaneously. Using
Support, two such extensions were developed that are
described here: AS* (based on algebraic specifications)
and FSQ (based on functional specifications).

194

6109

(1) sort sequence [sort something/ is

(2 constructor

(8) epsilon;

(4} cons : something, sequence;

(5} operation head : sequence + something is axiom
(6) head(epsilon) == 7;

(7) head(cons(X,Y)) == X;

(8) operation count : sequence » integer is axiom
{9) countfepsilon) == 0;

(10) countfcons(X,Y)) == 1+count(Y),

(11) end;

Figure 1. Example of sequence specification

AS* for executable specifications

An algebraic specification is a series of axioms that link
together the operations that can be applied to an abstract
data type. As an extension to the Support environment. a
specifications extension based on these algebraic axioms
has been defined.

An AS* specification contains three features:

« aset of sort names that define new abstract objects and
their constructors

« a signature, which defines a set of defined operations
for manipulating the abstract objects

« 4 set of ordented equations (or axioms) that relate the
defined operations and constructors to each other

Figure 1 gives a simple example of a specification for a
sequence. Line (1) specxﬁes that a class of objects of sort
(i.e.. type) "sequence’ is being defined and indicates that
the new object will require as a parameter a sort ‘some-
thing" that will be specified in a later binding. A generic
class of sequences that will be instantiated by this later
binding 1o ‘something’ is being defined. Lines (2}—$)
define the two constructors needed to create an object of
this sort: “epsilon’ to return the empty object of sort
‘sequence’ and ‘cons’, which takes an clement and a
sequence and returns a new sequence with the element in
it. The functionality of each constructor is given allter its
name with the sort name ‘sequence’ impiied as last (e.g.,
"epsilon’ returns an empty ‘sequence’ and ‘cons’ requires
a ‘something’ and a ‘sequence’ and returns a ‘sequence’.)
‘Epsilon’ initializes objects of this sort and ‘cons’ creales
new complex objects.

This object is manipulated by means of a set of defined
operations. In this simple example, operations “head’ and
‘count’ are given with their signatures on lines (5) and
(8). They are defined by the rewrite rules (axioms) on
lines (6—(10). "Head' says to return the e¢lement last
included into the sequence by the ‘cons’ function. while
-count’ returns 0 for ‘epsilon’ (i.e.. an empty list) or | plus
the size of any non-null list with the first element
removed. As can be seen, the formal definitions of each
function includes recursive algorithms for computing its
value by reducing any complex object to a finite set of
applications of the constructor functions. The - " on line
(6) is equivalent to an error condition, and the implemen-
tation stops execution and issues an error message when

information and software technology

this occurs. (That is, it is illegal to take the "head’ of an
empty list.)

For example, the list <X,Y,Z> is created by the
construction:

cons(X,cons(Y .cons(Z,epsilon)))
and the operation ‘count’ uses this construction, as in:

count(< X.Y,Z>)=

| +count(<Y.Z>)=

I+ 1 +couny(<Z>)=

| +1+ 1 +count{ <epsilon>)=
I+1+1+0=

3

The use of the Knuth—Bendix algorithm!? defines a
proof of adequacy of the resulting algebraic equations by
showing the equivalence of supposedly equal terms to the
same ground (i.e., constant) terms. As the Knuth—Ben-
dix algorithm is based on an ordering transformation
from one term to a ‘simpler’ term, however. the algor-
ithm defines an operation that can be ‘executed’ and
proven to terminate. Therefore, any set of axioms that is
‘Knuth—Bendix" can be transformed mechanically into
a series of transformations that can be executed in some
programming language. in this case PASCAL.

Similar to Larch and Larch/CLUY, AS* specifications
are independent of the underlying programming lan-
guage and must be defined relative to any concrete lan-
guage. Libraries of generic specifications can be used to
form the basis of a reuse methodology where the generic
specification is refined to an explicit specification in a
specific programming language by binding the generic
sorts 10 specific programming language types. In this
case PASCAL is considered as the implementation vehicle,
so to create ASPascal, the extension to PASCAL that
contains AS* specifications, a link between a PASCAL
object and an AS* sort must be indicated.

An explicit specification is created by a refinement of a
generic specification via the use clause. as in:

sort intsequence is
use sequence {integer]
end:

which refines the generic sort,'sequence’ given earlier and
indicates that a new sort “intsequence’ is created by
modifying ‘sequence’ with a binding of PASCAL integers
to the free sort "something’ of Figure |. The operations
*head' and ‘count’ in ‘sequence’ become ‘intsequence—
head’ and intsequence_count’ in the new sort, although
the actual mapping to their new names is handled auto-
matically and of no concern to the programmer.

The interface assumption is made that an explicit sort
specification

Sort newsort is ...

is equivalent to the PASCAL type declaration

vol 32 no 3 apnl 1990

6109

transiates

PASCAL source Executable

Specification
file file file

Figure 2. AS*® 100lset
type newsort = ...

The primitive PASCAL scalar types (char. Boolean,
integer, real) may all be used in abstract sort definitions.
and any explicit sort may also be used in a refinement.
Thus

var A: intsequence;

simply creates a PASCAL variable 4, which is of type
‘intsequence’.

The power of this system is in alternative bindings. For
example. real sequences could be created as

sort realsequence is use sequence {real] end:

Similarly. a sort such as a "book’ could be used to create
a type “library’ as

sort library is use sequence (book] end:

As stated earlier. syntax editors might have greater use
with more compiex source languages. and the integrated
tool set forms an effective basis for a CASE tool. There-
fore, a prototype AS* system was built on top of the
existing Support environment. Figure 2 represents this
initial system that has been constructed. The four com-
ponents are as follows.

AS/Support

AS/Support is a modification to the Support environ-
ment described earlier. which provides text-editing capa-
bilities for creating specifications. It is also the control
module that invokes the verification 100l. AS;Support
first checks axioms within operations for syntactic
consistency. Because of the language-based design of the

underlying environment. only syntactically correct
axioms with the syntax
operation_name(< expression_list >)= = <expres-

sion >

can be entered by the user. After the user builds a sort.
AS/Support formats the sort syntax into an appropriate
format suitable for PROLOG and invokes AS/Verifier as a
subprocess. AS/Verifier reads these axioms and checks
executability. After passing all executability checks
through AS;Verifier, the user may save the ASPascal
program in a library for later translation by AS/PC or
for later incorporation into another ASPascal program.

In case of failure, the causing axiom, if it can be deter-
mined, is highlighted to allow the user an interactive
mechanism to change the specifications.

AS/Verifier
AS/Verifier, a PROLOG program, is called by AS/Support
and verifies the set of axioms via the Knuth—Bendix
algorithm. In general the axioms need to be a noetherian
term rewriting system, and, if possible, AS/Verifier
makes this determination. Of course, as the general
problem is undecidable, in some cases the resuits are
inconclusive. In any case, after one pass through the
axioms. AS/Verifier will either succeed or indicate which
axiom is currently failing so that the user may modify the
definition and try again. As stated previously, if any
error is found. an appropriate message is relayed back to
AS/Support and displayed to the user.

For example, the "sequence’ definition of Figure | will
be converted to the following clauses and passed to AS/
Verifier:

as«sort (sequence, {epsilon, cons, head. count]).
function (1, epsilon, [}, sequence).

function (2. cons, [something, sequence], sequence).
function (3. head, {sequence], something).

function (4. count, {sequence], integer).

axiom (3, head (epsilon), 7).

axiom (6. head (cons(x.y)),x).

axiom (7. count (epsilon),0).

axiom (8. count (cons(x.y)), | +count(y)).

(as+sort is the internal name for a new sort’.) The
Knuth—Bendix algorithm either shows convergence of
the axioms or indicates additional axioms that are
needed: it may not indicate, however, when sufficient
axioms have been added in the case of not converging
rapidly enough (the usual problem with undecidability
results). In this case, AS/Verifier does a single pass over
the axioms and then terminates, indicating where the
problem is with the axioms.

AS/PC

AS/PC is the translator, written in YACC, that converts
specifications into standard PASCAL source programs.
The code generally consists of a sequence of if state-
ments, each checking the validity of the ieft-hand side of
the axiom before executing the Knuth—Bendix reduc-
tion.

PC

PC is the standard system PASCAL compiler. At this
point, the specifications have been converted to standard
PASCAL. and any comparable compiler can be used for
compilation and execution.

Specifications appear in programs as function calls in the
host programming language. To translate such calls, itis
necessary to determine. for each function reference.
which explicit specification is being used. Thus a refer-
ence to ‘head(thing)' where "thing’ is an "intsequence’ is

196

6109

translated to a call to ‘intsequence_head(thing)’, while
“head(realthing)’ will result in “realsequence head(real-
thing)' for variable ‘reaithing’ of sort ‘realsequence’.
(The details of the AS* implementation appear eise-
where'.)

It should be clear that this translation does not resuit
in a particularly efficient implementation; as a specifica-
tions or prototyping tool, however, efficiency is not its
overriding purpose. The goal is to provide easily a cor-
rect extension {0 an existing system and to provide a
verification tool. e.g.. an oracle. that can be used as a test
against an eventual efficient solution to the problem.

FSQ for software reuse

In the previous section, AS* was described as an environ-
ment based on an algebraic specification model for pro-
gram specifications. Support is also being applied using
the functional correctness model's. In this model, both a
program and a specification are viewed as functions. and
techniques have been developed to determine if both
represent the same transformation of the data. This
model of program development is briefly summarized
and how Support is modified to aid in this process is then
demonstrated.

Functional correctness

A specification fis a function. A box notation [...] is used
to signify the function that a given string of text
implements. If character string x represents a source
program that implements exactly /. then [a] = f.and it 1s
stated that x is a solution to f.

Sequential program execution is modelled by function
composition. If a sequence of statements s = 5,5, ... 3,
then (s} = [s] 0 ... 0 (s} = s (...)si])) ...). Using
techniques from denotational semantics. each statement
s is a function from a program state to another state.
Each program state is a function from variables to values
and represents the abstract notion of data storage. Sym-
bolic trace tables are use® 1o derive the state functions
for if, while. and assignment statements.

Program design is accomplished by converting a speci-
fication function f, written in a LISP-like notation. into a
source program a, and then showing that {a] = /. The
specification f is called the abstract function and the
program x the concrete design. Given this functional
model, the basic theorem for functional correctness'® can
then be proved. Program p is correct with respect to
specification function fif and only if fC [p].

This model can be applied to three separate activities:

o Program verification. If fis a function and if p is a
program, determine if they are the same function, i.e..
[p] = /. or more generally f C {p].

o Program design. If f is a function. then develop a
program p such that [p] = /.

o Reverse engineering. If p is a program, then find a
function fsuch that (p] = f

information and software technology

‘ re is the meaning for the segment

'x? < 'y —>as=’x’;bia’y’jcia’x’;
not(’x’ < ’y?’) —>a:=’x’;bim’y’;cix’y’;

specitication

| Functiona

a 1= 'x’.. |T->a:="x’

b s 'y, |T->b:=’y?

if a <b the.. |2 < b ->c:m=a;
| nott

Figure 3. FSQ derived meaning for program fragment

FSQ extensions

The use of existing program fragments when developing
a new program is one technique being studied for
improving programmer productivity. Often, however, it
is first necessary to determine exactly what these pro-
gram fragments or procedures do. As formal specifica-
tions are rarely used, and documentation is generally
quite inadequate, programmers are reluctant to use an
existing procedure written by another from. some pre-
vious project since the mental effort to truly understand
that procedure is quite high.

To study this problem. the Support environment was
extended with a new tool, Function Specification Quali-
fier (FSQ), to aid this process of determining the specifi-
cations for an existing component of a system. FSQ-1, a
first prototype of this tool, is described.

FSQ is an additional tool to the basic CF-PASCAL
programming environment in Support and works as
follows:

e A programmer either builds.a program using Support
(and hence uses FSQ as a verification tool) or else
reads one from the file system using the LALR parser
internal to Support to build the parse tree (making
FSQ a reverse engineering tool).

o The cursor is moved over the section of program that

needs to be verified and FSQ is invoked via the com-

mand .f5q.

FSQ symbolically executes each statement and deter-

mines its meaning. This is relayed back to the user,

who either accepts this meaning (e.g.. its specification)
or manually simplifies it 1o another meaning.

o The derived meaning is stored in the Support syntax
tree. If any part of a program is symbolically executed
and already has a derived meaning, then that meaning
will be used without further analysis. This meaning
can then be carried along as part of the file system
repository information on that object. Future users of
that object will not have to derive the meaning again.

vol 32 no 3 april 1990

6109

Over time, more and more procedures in the system
repository will have such derived meanings, making it
more efficient to reuse such objects frequently.

Figure 3 shows a sample execution of F5Q. The top
meaning window shows the desired result from the
execution, the middle program trace window indicates
each partial result, and the bottom window highlights the
section of the source program that is under study.

FSQ executes over the covered portion of Figure 3 as
follows:

o (1) For a:="x" the system derives the conditional T —
a:= 'x". (This is similar to the LISP ‘cond’ and means
‘True implies a:="x".")

o (2) For b: ="y the system derives the conditional T —
b:="y".

e (3) For c:=a the system derives the conditional T —
c:=a.

o (4) For c:=b the system derives the conditional T —
c.=b.

o (5) For the if statement, FSQ combines steps (3) and
{(4) to produce:

not(a<b) - c:=b;
(a<b)= c:=a

o (6) Finally, for the entire sequence, FSQ combines the
results from steps (1) through (5) to produce the func-
tion described in Figure 3.

Note that this process is simpler than general program
verification (and potentiaily less accurate) as the pro-
grammer can override the system and insert arbitrary
definitions. For exampile, in the program of Figure 3, the
user, in the process of deriving the meaning of the if
statement at step (5), could have either substituted the
correct simplification

¢:=min (a.b)

197

ORIGINAL PAGE IS
OF POOR QUALITY

or any other correct or incorrect expression for the if.
Thus the user must trade off between ‘absolute’ but
extremely difficult correctness using a verifier and a
system like FSQ, which performs efficient, but possibly
imperfect, verification. The tool is truly interactive, with
FSQ performing all the tedious bookkeeping procedures,
and by having the user required provide for the creative
program derivation activities. This avoids the general
undecidability issues of general verifiers and permits the
data-intensive functional verification mechanism to be
used practicaily.

CONCLUSIONS

In this paper the basic features of syntax-directed editors
have been described and possible reasons why such
editors have not become more popular outlined. The
author believes that their benefits do not increase pro-
ductivity sufficiently to compensate for their deficiencies.
Source-code generation, although labour intensive, is not
a major cost factor in system development.

However, syntax editors can provide a consistent
interface when system specification is integrated with
source-code generation. To experiment with this, two
specification projects have been described as extensions
to an existing PASCAL development environment. In
these extensions both algebraic specifications and func-
tional correctness models of development were applied
as extensions of automated tool support. Further work is
needed to test the eventual applicability of this form of
environment.

ACKNOWLEDGEMENTS

This work was partially supported by Air Force Office of
Scientific Research grant 87-0130. Office of Naval
Research grant N00014-87-K-0307. and NASA grant
NSG-5123. all to the University of Maryland. Indivi-
duals who have contributed inciude: for Support: Bonnie
Kowalchack. David Itkin. Jennifer Drapkin, Michael
Maggio. and Laurence Herman: for AS*: Sergio Antoy
(of Virginia Tech), Sergio Cardenas, Paola Forcheri and
Maria Teresa Molfino (of .M.A., Genoa, Italy), Stuart
Pearlman. and Lifu Wu; and for FSQ: Victor Basili and
Sara Qian.

REFERENCES

1 Hansen, W J ‘User engineering principles for interac-
tive systems’ in Proc. Full Joint Comp. Conf. Vol 39
(1971) pp 523-532

2 Donzeau-Gouge, V, Kahn, G, Huet, B, Lang, B and
Levy, J ‘A structure assisted program editor: a first

198

6109

step towards computer assisted programming’ in
Proc. Int. Computer Symp. North-Holland, Amster-
dam. The Netherlands (1975)

3 Teitlebaum, T and Reps, T *CPS: the Cornell Program
Synthesizer’” Commun. ACM Vol 24 No 9 (1981) pp
563-573

4 Proc. ACM SIGPLAN Symp. Language Issues in

Programming Environments Seattle, WA USA (June

1985)

Proc. ACM SIGSOFT Practical Software Develop-

ment Environment Conf. Pittsburgh. PA, USA (April

1984)

6 Zelkowitz, M V A small contribution to editing with
a syntax directed editor’ in Proc. ACM SIGSOFT
Practical Software Development Environment Conf.
Pittsburgh, PA, USA (April 1984) pp 1-6

7 Zelkowitz, M V, Kowalchack, B, Itkin. D and Her-
man, L A support tool for teaching computer pro-
gramming’ in Fairley, R and Freeman, P (eds) /ssues in
software engineering education Springer-Verlag, Ber-
lin. FRG (1989) pp 139-167

8 Fischer, C, Pal, A, Stock, D, Johnson, G and Mauney,
J “The POE language-based editor project’ in Proc.
ACM SIGSOFT Practical Software Development
Environment Conf. Pittsburgh, PA. USA (April 1984)
pp 21-29

9 Habermann, N and Notkin, D "Gandalf. Software
development environments' /[EEE Trans. Sofi. Eng.
Vol 12 No 12 (December 1986) pp 1117-1127

10 Standish, T and Taylor R. ‘Arcturus: a prototype
advanced Ada programming environment’ in Proc.
ACM SIGSOFT Practical Software Development
Environment Conf. Pittsburgh, PA. USA (April 1984)
pp 37-64

11 Lang, B *On the usefulness of syntax directed editors’
in Proc. [FIP Workshop on Advanced Progranuming
Environments Trondheim. Norway (June 1986) pp
45-51

12 Knuth, D and Bendix. P 'Simple word problems in
universal aigebras’ in Compuiational problems in
abstract aigebra Pergamon Press. New York. NY,
USA (1970) pp 263-297

13 Wing, J 'Writing Larch interface specifications” 4C.M
Trans. Prog. Lang. Syst. Vol 9 No 1 (1987) pp i-24

14 Antoy, S, Forcheri, P, Molfino, T and Zelkowitz, M
"Rapid prototyping of system enhancements’ in Proc.
Ist Int. Conf. System Integration (April 1990)

15 Gannon, J D, Hamlet, R G and Mills, H D "Theory of
modules’ /EEE Trans. Soft. Eng. Yol 13 No 7 (July
1987) pp 820-829

16 Mills, H D, Basili, V R, Gannon, J D and Hamlet, R G
Principles of computer programming: a mathematical
approach Allyn Bacon (1987)

wn

information and software technology

3
i

-

[

)

ECTION -~ ADA TE IE

The technical papers included in this section were originally

prepared as indicated below.

6109

"On Designing Parametrized Systems Using Ada,"
M. Stark, Proceedings of the Seventh Washington Ada

Symposium, June 1990

"PUC: A Functional Specification Language for
Ada," P. Straub and M. Zelkowitz, Proceedings of
he Tenth International nferen h hilean

Computer Science Society, July 1990

"Software Reclamation: Improving Post-Development
Reusability," J. Bailey and V. Basili, Pro in
f the Ei A 1l National nferen n Ada

Technology, March 1990

On Designing Parametrized Systems Using Ada
Michael Stark =
Goddard Space Flight Center

1. Introduction

A parametrized system is & software system that can be
configured by selecting generaiized models and providing
specific parameter vaiues to fit those models intoa
standardized design. This is in contrast to the top-down
development approach where a system is designed first, and
software is reused only when it fits into the design. The term
reconfigurable is used interchangeably with parametrized
throughout the paper. This concept is particularly useful in a
development environment such as the Goddard Space Flight
Canter (GSFC) Fight Dynamics Division (FDD), where
successive systems have similar characteristics.

The FDD's Soitware Engineering Laboratory (SEL) has been
examining reuss issues associated with Ada from the beginning
of its Ada research in 1985. The lessons leamed have been
applied to operational Ada systems, leading to an immediate
trend towards greater reuse than is typical for FORTRAN
systems [McGanry 1989]. in addition, the Generic Simulator
prototyping project (GENSIM) was a first effort at designing a
parametrized simulator system. The lessons leamed through
the use of Ada and the GENSIM prototype are being appiied to
the Combined Operational Mission Planning and Attitude
Support Systam (COMPASS), which is to be a reconfigurable
system for a much larger portion of the flight dynamics domain.
This paper will discuss the lessons leamed from the GENSIM
project, some of the reconfiguration concepts planned for
COMPASS, and will define a model for the development of
reconfigurable systems. This model provides tachniques for
realizing the potential for "Domain-Directed Reuse”, as defined
by Braun and Prieto-Diaz [Braun 1988].

The major motive for reconfigurable systems in the FDD is cost

reduction. Having a well-lested set of reusable components may
also increase refiability and shorten development schedules, but
cost is the primary factor in this environment. Research done by

6109

the SEL indicates that yerbatim software reuse (reuse without
modﬁcanon) can produce major cost savings. The cost of
integrating a component that is,reused verbatim is approximately
10 pcrcomdmoeonotdevdapmg a new camponent from
scratch [Solomon 1987]. Analysis done for GENSIM indicated
that approximately 70 to 80 per cent of the code coukd be reused
verbatim, and that this shouid cut simulator development costs in

halt {Markiey 1987].

2. Reconfigurable Systems

This section focuses on the approaches taken and lessons
lsamed from the GENSIM and COMPASS projects. These
lessons influenced the reuse concepts and techniques defined in
the subsequent sections of the paper.

2.1 GENSIM Overview

The GENSIM project was started in late 1986, and divided into
two major phases. The first phase lasted until mid-1888, with
the major products being the cost analysis cited above,
mathematical specifications, and the high level system dasign.
From mid-1988 o mii-1989 a smali development team started
implementing prototype software. The project was terminated
before the prototype system was compieted and evaiuated, as
COMPASS incorporates simulation requirements into its broader
domain. Nonetheless, enough development work was done to
leam some useful lessons.

The generic simulator dasign consists of a set of “modulas” that
plug into a standardized simulator architecture. Each of these
modules was expectad to have a cormesponding mathematical
specification, design data (object disgrams and Ada package
spaecifications), and source code. The use of standardized
specifications was intended 10 prevent the slight differences in
specifications that often impede verbatim reuse. In addition, the
GENSIM project intended to maintain test plans, data, and
software for each moduie, so that changes in standard modules
could be tasted rapidly.

The simulator architecture is based on the designs of the first
two Ada simulators developed in the FDD. The enhancements

Figure 1 - D

and changes to this architecture were intended to allow different
sets of modules 10 be configured into a system, depending on
the simulation requirements for & given satellite. It was possible
10 generalize the early designs, but because these were early
designs, GENSIM incorporated some design flaws, even as
others were removed. The major results of GENSIM were

1) The concept of reusing products from all kfe cycle
phnnspfmhdnopmbbms.wpmvidedlhemﬁdpated
benefit of standardizing mathematical specifications. The
GENSIM team thoroughly specifies the individual simulator
modules. However, the connections between modules were
madontduignﬁtm.despiumtaammoympmmﬂd
dependencies inherent in the problem. Note capturing these
dop«vdondsinlho:podﬁaﬁmmmtapmum.:imm
GENSIM team happened to be knowledgable enough to assure
that a function needad by one module was provided by another.
Nonetheless, pmuundomahdependend«shwldpmbmbly
be captured in the specifications, so that developers with less
domain expertise will have the information they need. The
COMPASS team is representing problem domain dependencies
in their standardized specifications.

2) The configuration of a system is done by instantiating all
mmgmwmhmemom« The
GENSIM team instantiated each package as a kbrary unit. in
cases where the same sat of packages are used in each system,
goneriacanbecombbedsomatawbsystemanbo
“nstantiated* through the instantiation of a single generic

6109

package.

3) The legacy of the previous simulator architectures made
the impiementation of standardized components more difficult.
in particular, the storage of inputs and results for a given
simulation scenario could not be adequately generalized. This
lesson is discussed i more detail in the next section.

22 GENSIM as a Standardized Architecture

The purpose of the flight dynamics simulators generalized by
GENSIM is 10 test the flight dynamics control algorithms for a
satellite before it is launched. Figure 1 shows the architecture
for a spacecraft simulator built from GENSIM modules. This
diagram shows the dependencies batween major simulator
subsystems. The Truth Modet represents the “True* responsa af
a spacecraft to its control system, and is configured using the
components needed for a specific satellite. The Spacecraft
Control subsystem contains new coda that implements a
particular satellite’s control laws. The remaining subsystems are
built o support thesa two subsystems, and must also be
configurable to support varying\sets of moduies. This
reconfigurabiiity became especially cumbersome for the Case
Interface, which is the subsystem-that manages input data and
results for simulation scenarios (cases). Figure 2 shows the two
major parts of Casa interface. Al simulation inputs are
managed by Parameter Interface, and all results are managed
by Results Interface. These two subsystems are accessed by
both the user and the two simulation subsystems.

“types package”
Fiqure2 (dncarmbons ot
generic instantation
5-3

2) the parameters passed in and out of a package are
limited to the data types defined by Interface Types. Module

specific enumeration types (such as “type FSS_POWER is
(OFF,ON)") cannot passed to the user except by using the ‘POS
attribute to onnvemo‘ an intager which is then displayed.

Figure § shows an iriprovement 1o the architecture that
addresses the first disadvantage. The package FSS_ADT
axports an abstract data type (ADT) that implements all the
modefing of the fine sun sensor. Now the state of the FSS
module is based on this abstract data type, and the module’s
functionality is implemented by calling the operations on the
type. This allows package FSS_ADT to be implemented by a
developer who is aware of all the nuances of fine sun sensor
modeling, and the FSS module can be implemented by a
daveloper who is aware of ail the nuances of the simulator
architecture. in addition, FSS_ADT and all the other abstract
data types defined for the flight dynamics simulation domain can
be used to build a system with a completely different
architecture, without changing a fine of code in the packages
that implement the modeling of the flight dynamics problem. An
architecture that addresses the limitations imposed by
Interface_Types can be built around such abstract data types, as
is shown in section 4. The separation of problem domain and
system architecture considerations is a key element of the reuse
models described in section 3.

The GENSIM configuration concept called for the subsystems of
the Case Intarface to be built from components associated with
oach module. Figure 3 shows how a parameter and results
database is created for a Fine Sun Sensor (FSS) module by
instantiating standardized generics. The "FSS_Database®
padageuswodbyhemodulesmmalmnmmmgmhiﬁd
parameters, and the "FSS_Resuits" package is-used by the
module’'s computation routines to store simulated results. The
shaded areas show that the individual components fit into the
Casae Intarface packages. Figure 4 shows how several module
databases fit into the Parameter interface subsystam.

The advantage of this approach is that the packages
Intartace_Types and FSS_Types contain all the declarative
information needed to include a module in a simulator
configuration, and that standard types and protocols are used o
achieve this. The configuration parameters include defauit
vaiues for module input parsmaeters, flags indicating which
parameters a user is aliowed to change, and similar flags
indicating what resuits a user may display during a simulation or
print after a simulation. The disadvantages of this design
approach are

1) the developer of a flight dynamics module has to be
aware of all the complexities inherent in the simulator
architecture, and all the dependencies shown in Figures 3 and
4, and

6109 CRIGINAL FAGE IS
Of PCOR QUALITY

. . .

ln(Mnkm

Eigure 5.

Interface Types Interface |ypes

23 COMPASS

COMPASS is the second FDD project that is daveloping
reconfigurable software. [t has the same cost reduction goal as
GENSIM, but covers a much larger problem domain.

COMPASS is intended to support the flight dynamics
simulations area, mission planning and analysis both before and
after launch, and spacecraft attitude support systems for
mission cperations. The estimated size of COMPASS is over a
million lines (counting all carriage retums) of Ada source code,
and is targeted 10 run on several different computers. This
implies both being able © configure systems to run s
distributed systems, and to be able to target the same functions
to different platforms. Thesa considerations have prompted
refinements to the reuse model defined in [Booth 1988].

COMPASS has aiso involves defining standardized
specifications to promote verbatim reuse, Unlike GENSIM, a
standard specification mef has been defined for
COMPASS [Seidewitz 1989]. The COMPASS specification
concepts are object-orientad, but contain restrictions tied to both
reconfigurability and to project standards. For example, there is
a restriction on the number of leveis of superclasses and
subclasses aflowed in an inheritance hierarchy.

6109

3 Reuse Conospts

To be able to design reconfigurable systems, itis necassary to
have some underlying principles that can be used as design
guidefines. The major concept'defined in this paper is a Layered
Reuse Model that catsgorizes componants by function and
defines dependencies among these components. The initial
model was developed as a result of the work done on GENSIM
and on an operational system, the Upper Atmosphere Research
Satelite (UARS) Telemetry Simulator (JARSTELS) [Booth
1989). This model was primarily driven by the need to separate
problem domain and systern architecture considerations, as is
discussed in section 2. This model does not address how to
incorporate very general components that have potential use
across several problem domains and/or architectures, nor does
it address the separation of system dependent features from
potentially portable code. The latter omission became obvious
when a multiplatiorm system such as COMPASS was

considered.
A -
Major Layers Laveis Examnpies
System
Archilecture Case_interians
Archhacture Tomplates
Lovels
System Modules FSS_Module
Dormain FSS_ADT
Definiion (Fine sun sensor
Problem
Clatses abstract data type)
Lavels
Dormain Language
Classes Unear_Aigebra
Independent Booch
Service Servioss Componens (TH)
Lovels
System DEC mmth Borary
Dependent package
Services ’
Fqure 6

To address the above issues, a “services” layer was added to
the model. This services layer is spiit into a system dependent
and a system independent layer. The updated reuse model is
shown in Figure 6. A component in a given layer can only
depend on components in layers below it, as is the casa in any
good layered model. The layers are defined as follows:

- Components at this level

System Architecture Templates
provide a tempiate into which modules fit. These can be

reconfigurable subsystems such as the GENSIM Case Interface
discussad above, or they can be standard components that do
not depend on the particular configuration. In GENSIM the
Display Interface and the Plot Interface were designed to be

ORIGINAL PAGE IS
OF POOR QUALITY

standard software, with any needed configuration data being
provided by input fies, rather than generic instantiation.

— This layer contains components that are
designed to fit into a standard design. These modules are built
from components at the problem domain and service levels.

Domain Definition Classes — These components define classes
in the problem domain that are identified through domain
analysis. They are genersily implemented as Ada packages
exporting abstract data types, as is discussed above.

Domain Language Classes — Components at this level capture
the vocabulary of a particular domain, in other words, these
classes capture the knowledge and language that domain
axperts use 10 express the spacifications for domain definition
classes. !in the flight dynamics domain, such classes would
include “vector”, “matrix®, “orbit", and “attitude”. The domain
analyst would use these simpler classes 1o define more complex
classes such as "Fine Sun Sensor”.

System Independent Services — This layer contains
components that can be usad in implementing both the prablem
domain {ayer and architecture layer components. They are
usually usable in more than one problem domain and/or more
than one system architscture. Components at this level include
the generic data structures and tools provided by the Booch
Components (TM) [Booch 1987), as weil as portable interfaces
to general services such as DEC's screen management
routines. These portable interfaces can be moved to different
computers, and new code or a different commercial product can
be used to implement the same functions. Thus one ends up
with muttiple implementations of a single
abstraction. Calls to this package shouid act the same, even if
they are implemented in a machine dependent manner.

System Dependant Sarvicas — This layer contains all the
components that are dependent on a particuiar computer or
operating system. This generally includes all non-Ada code, as
most other languages have different non-standard extensions on
different machines. This also includes Ada code that
incorporates system dependent features such as Direct_IO files
created with a non-null FORM parameter. These system
dependent features should have system independent interfaces
at a higher lovel.

The improved model takes an object-oriented approach to
specifying the problem domain. The domain definition classes
and domain language classes form the two major groupings
within the problem domain. Each of these two groups are aiso
organized with the more domain specific classes depending on
the more general classes. For example, the flight-dynamics
classes “orbit” and "attitude” depend on the more general
clagses “vector” and ‘matrix®,

Thae layered reuse model does not depend on Ada, but the Ada
language contains features that support this model wed. The
use of generic packages allows each of the problem domain
classes to be implemented as a generic unit that is complately
decoupled from all other classes. in addition, the generic formal
definitions associated with a package capture all the information
about dependencies in a single location, as well as distributing
external references throughout the code. Ancther useful feature
is the separation of package specifications (and subprogram

6109

and task specifications as well) from their implementations. This
is useful in hiding system dependent services, which can then
have the system independent part defined at the appropriate
layer. For example, the intarface 1o a system dependent math
library would be classified within the problem domain, and the
interface to system-dependent screen management routines
couid be system inddpendent services. The 5 top lavels in this
mode! would then contain system independent Ada code, which
would be expected 1 be completely portable. This is nota

of attempting to make the highest layers portable,
but rather is a benefit of isolating the known system
depandencies, and using a standardized programming
lanhguage. Using Ada leads naturaily to having most reusable
components aiso be portable. Similar portability may be
attainable using C. Itis almost certainly not attainable with
FORTRAN, as the dialects vary too greatly between machines.

4. Example

This section presents an improved GENSIM design as an
exampie of how to use the layered model. This new design is
presented at the sarme level of detail as the original GENSIM
design presented in saction 2.~ Figure 7 shows the improved
simulator design. :

Architecture

Service
Layer

Fiqure 7

The key differences in this design are the location of the Case
Interface subsystem and the new VO services subsystem. In
additon, the Spacecraft Control, Truth Model, and Utilities

are combined into the Simuiator subsystem. Figure
8 shows that the dependencies between these three subsystams
are the same as in the original architecture (Figure 1), but that
now none of thase subsystems depends on Case Interface.

This extra design level is not carried through to
implementation. Subsystams may be implemented as a single
package which provides an intertace to all the subsystem’s
companents, but in this case the Simulator subsystem is merely

a logical grouping intended to reduce the design complexity.

Figure 7 siso shows the three major layers of the reuse model.
In this design, the /O services consist of standard Ada packages
such as Text_IO or Direct_{O, and an interface to DEC’s Screen
Management Guidelines (SMG) routines. Figure 9 shows the

interrelationship between the FSS module and the simulator
architecture. Here the abstract data type for a sensor is created
by instantiating a generic package. The generic ADT is
designed so that all extemal dependendies are captured in the
geneic formal part. These dependencies include types provided
by the simulator's Math_Types package, and functions to select
information from the Sun and Dynamics modules. The
FSS_Objects package uses the ADT (private type) exported by
the FSS_ADT package to define its package state, and the
FSS_Parameters_Display package uses visible types exported
by FSS_ADT to define parameter screens. The
FSS_Parameter_Displays package also instantiates
Enumeration_lO using “type FSS_POWER is (OFF.ON)" as the
actual parameter. This removes the reliance on using the ‘POS
attribute of enumerated types that has been a feature of all FOD
simufators up until now.

Figure 10 shows how the FSS_Parameter_Display package fits
into the dasign of the Case Editor subsystem. The Case Editor
subsystam is the part of the User_lnterface that allows a user to
change any of the initial parameters for a simulation. The
Paramater_Editor package tracks which displays the user has
selected and calls the appropriate parametsr display package.
The difference is that now the User_{nterface controls the

6109

initafization of simulation parameters, rather than the simulator
components requesting intial values from a database contained
within the Case Interface.

In this example, the use of the layered model removes the Truth
Model's complex dependencies on the Case interface packages
shown in Figure 3. This enables the Simulator subsystam
components to be usable within more than one architecture.
The placing of the system architecture subsystems above the
Simulator subsystem aiso allows general purpose sefvice layer
components to be enhanced as needed to integrate a given
moduie into the system architectura. The
FSS_Paramaeter_Display demonstrates this concept by using
Enumeration_lO to add to the general |O services.

5. Future Directions

This paper describes a general reuse model for designing
reconfigurable systems. The next step is to map the layered
reuse modal to Ada design and implementation concepts. The
high-level designs presented in this paper use generic packages
to help parametrize systems. There are many possibie ways to
incorporate generic packagas into a larger design. These “reuse
in the smail® techniques include nesting generic instantiations,
nesting generic definitions, and creating dependencies between
library instantiations [Booth 1989]. This paper has used the last
technique so that while generic jnstantiations are coupled, each
of the generic units is completely decoupled from the others.

The layered reuse model provides a sound basis for project
management. By strictly separating the problem domain issues
from the system architecture issuas, a manager can assign the
appropriate experts to implement packages within each layer of
the model. Improving the allocation of personnet to tasks should

impfOVB- both productivity and software quality. As this model is
used, an understanding of what proportion of a system fafls into

uoaé_t_om.m

Setvices

Eigure 10

which layer will avoive.

The layered reuse model aiso can be used to understand which
software is most critical. Layered modeis have seen the most
use in operating system design. The kemel of an operating
system typically requires the most attention, despite the fact it is
a relatively small proportion of the code. This is because ail
other layers depend on its correctness and efficiency. The
analogous layers in the reuse model are the service layers and
the domain language layer. Additional evidence for the
assertion is that the FDD has cbserved performance
degradation in its Ada simulators due to the inefficient
implementation of mathematical utifiies packages.

In addition to the performance problems cbserved above, there
is a concem that layered implementation modeis may be
inherently siow due to the addition of extra levels of procedure
calls o accomplish the same work. The FOD encountered this
problem with 2 commerciaily provided graphics interface that
provides the same FORTRAN interface routines on a VAX or an
IBM mainframe. Whather this is due to extra procedure calls or
generally inefficient implementation is unclear. Ada addresses
the former problem by providing pragma Infine. The latter
problem must be addressed by improving the software. If the
software dasign and impiementation is done properly, the
layered reuse model should not degrade performance.

8. Conciusion

In “Domain-Directed Reuse®, Braun and Prieto-Diaz extract
properties that are common to applications (such as compiler

6109

dasign) where a high degree of reuse is already being obtained
[Braun 1989]. These properties are a focus on a particular
application domain, assumptions about system architecture
constraints, and a set of generalized and well defined interfaces.
The layered reuse model provides design concepts for
examining applications domains and defining standardized
architectures. Tl'lese!tedmiques will help realize the potential
inherent in the concept of domain directed reuse.

References

[Booch 1987] Booch, G_Software Components With Ada, Menio
Park, Calif., Benjamin/Commings, 1987.

[Braun 1989] Bmun C. and R Pneb-Diaz. Domlan-Dlmcted
.Emmmn.w.edsm Novembef 1989.
[Booth 1988] Booth, E. and M. Stark, “Using AdaGenem: to

Maximize Verbatim Software Reuse,”
89, October 1989.

{Markley 1988] Markley, F. L :\:. Mendeisolm, M. Stark and M.
Woodard, “Impact Study of Generic Simulator Software
(GENSIM) on Attitude Dynamics Simulator Development Within
The Systems Development Branch,” Unpublished FOD Study,
1988.

[McGarry 1989] McGarry, F., S. Waligora, and T. McDermott,
*Experiences in the Software Engineering Laboratory (SEL)
Applvmg Sofmn Muwmmem. Proceedings of the

[Seidewitz 1989] Seidewitz, E. Combiced Operational Mission
Specification Concepts, Goddard Space Flight Center Flight
Dynamics Division, COMPASS-102, 1989.

[Sotomon 1987] Solomon, D. and W. Agresti, *Profile of
Software Reuse in the Flight Dynamics Environment,” Computer
Sciences Corporation, CSC/TM-87/6062, November 1987,

PUC: A Functional Specification Language for Ada*

Pablo A. Straub!
Computer Science Department
University of Maryland

Abstract

Formal specifications can enhance the quality, reli-
ability, and even reusability of software; they are
precise, can be complete in some sense, and are
mechanically processable. Despite these benefits,
formal specifications are seldom used in practice
for several reasons: programmers lack an adequate
background; both concepts and notations in spec-
ification languages appear obtuse to programmers;
formal specifications are sometimes too high-level,
providing too large a gap from the specification to
the implementation; methods are not tailored to the
environment; and fully formal methods are expen-
sive and time consuming.

In this paper we present PUC (pronounced
POOK), a specification language for Ada that ad-
~ dresses programmers’ concerns for understandabil-
ity. PUC is a functional language whose syntax
and data types resemble Ada’s, although it has
features like parametric polymorphism and higher-
order functions. The paper shows the require-
ments for the language PUC; presents an overview
of the language and how it is used in the specifica-
tion of Ada programs; and gives the requirements
and strategies for a semi-automatic translator from
PUC to Ada.

1 Introduction

The practical use of formal specifications in pro-
gram development is an important goal in soft-
ware engineering because formal specifications can
enhance the quality, reliability, and reusability of
software. Formal specifications are precise, can be
complete (in some sense), and are mechanically pro-
cessable (e.g., consistency checks). Since one of the

*Research supported in part by NASA Goddard Space
Flight Center grant NSG-5123.

! Additional support from ODEPLAN and Catholic Uni-
versity of Chile.

6109

Marvin V. Zelkowitz

Institute for Advanced Computer Studies

Computer Science Department
University of Maryland

main problems in software reusability is determin-
ing what is the functionality of a subprogram or
module, having a precise description will also im-
prove software reuse, lowering costs and improving
quality by using already tested components.

Despite the benefits of formal methods, few are
used in practice. There are several reasons: pro-
grammers do not have adequate background; both
concepts and notation in specification languages
are usually mathematically oriented; there is a big
conceptual gap from a very high level specification
down to the details of the implementation; methods
cannot be tailored to the environment; fully formal
systems are very expensive and time consumming,
and much software is not critical enough to justify
this cost.

A precise mathematical specification is useful
only if it is understood by the persons involved in
the development, so notational considerations are
very important. Two aspects of the specification
language have to be considered: the conceptual or
semantic level and the syntactic level. The concepts
represented in the language have to be very high
level, like the concepts in the domain area, but not
too high level, or else there will be a big conceptual
gap from the specification to the implementation.
Hence, there is a trade-off in the design of a spec-
ification language: if it is not very high level, the
program analysts and designers have a hard time;
if it is too high level, the implementors must fig-
ure out the algorithms from scratch. This trade-off
is summarized by the question of how much design
should be implicit on the specifications [13].

The second aspect of notation is syntax. Syn-
tactic issues are sometimes dismissed as syntactic
sugar; this is fine for a researcher who knows many
programming languages and can learn another one
very fast, but for most professional programmers
syntax is important. In particular, a syntax that
is similar but conflicting with the implementation
language is confusing.

This work grew out of studies within the Software
Engineering Laboratory (SEL) of NASA Goddard
Space Flight Center. The SEL has been monitor-
ing the development of ground support software for
unmanned spacecraft since 1976. Qur goal is to im-
prove the quality of software specifications within
the SEL, to improve both software development and
testing [13]. We approach this goal by incresing
the use of formal methods in software specifica-
tions. The SEL environment is characterized by
large (tens of K lines of code) scientific software
with complex functions and complex structure; po-
tential reuse of products and processes; programs
written in Ada using object-oriented design; few
critical timing constraints; and programmers with-
out background in logic and abstract algebra. To
increase formality of specifications, we designed the
especification language PUC suitable to this kind
of environment; in particular, users of PUC are not
required to know advanced logic or abstract alge-
bra.

Overview of the paper. The next section dis-
cusses the need for a new language. Section 3
presents the principal aspects of the PUC language,
along with examples. Section 4 shows how Ada pro-
grams can be developed using PUC as the specifi-
cation language. The example presented is a sim-
plified telemetry processor for satellite data. The
final section contains a summary, conclusions, and
a description of further work.

2 Why Another Language

There are many specification languages, yet we have
not found any that is suitable for our needs. This
section motivates the design of PUC, by presenting
previous work, design objectives and rationale.

2.1 Previous work

Specification languages proposed specifically for the
Ada programming language are based either on first
order predicate logic, Horn clauses, algebraic ab-
stract data types, or procedural description.

Booch proposes to use Ada itself as a specifica-
tion language for Ada programs. “Not only is Ada
suitable as an implementation language, but it is ex-
pressive enough to serve as a vehicle for capturing
our design decisions.” [1, page 50] However, most
design decisions that can be written in Ada are of

6109

syntactic nature. This includes functional decom-
position, but the meaning of subprograms cannot be
expressed in Ada without writing them in whole.

Anna (ANNotated Ada) is a specification lan-
guage designed to provide machine-processable ex-
planations of Ada programs [9]. Anna programs are
Ada programs with formal comments, that describe
the functional requirements for the program; prop-
erties of its components (variables, subprograms,
modules); and how these components interact. For-
mal comments are in the form of pre- and post-
conditions, module invariants, type constraints, and
other assertions. Anna programs are executable be-
cause they are Ada programs, but the specifications
themselves are only executable in the form of run-
time testing for consistency.

The PLEASE specification language for Ada is
based on logic restricted to Horn clauses (14].
PLEASE borrows from Anna the idea of writing.
formal comments in Ada programs. Programs in
PLEASE are executable so they can be used to
build prototypes, in which incomplete Ada pro-
grams call some procedures specified in PLEASE.
Unfortunately, pure Horn clauses are so inefficient,
that operational semantics (order of evaluation and
PROLOG cut command) have to be explicitly de-
clared complicating the specification.

The specification language Larch/Ada-88 also
uses formal comments within Ada programs [11].
This language is one of the interface languages of
the Larch family of specification languages. Larch
specifications are done at two levels: the meaning
of the abstractions used by the program are defined
using the Larch shared language (5], and then one of
the Larch interface languages is used to state what
the program does in terms of these abstractions.
The Larch shared language is based on algebraic
abstract data types. Using Larch/Ada-88 and the
prototype tools described in [11] it will be possi-
ble to develop verified Ada programs, hence this
method is fully formal.

2.2 Design objectives

We set several specific goals in the design of the
language to make it useful in the SEL environ-
ment. These goals are sometimes conflicting with
each other.

¢ The language should bridge the usual gap be-
tween very high level logical specifications and
the detailed data and control management in
Ada.

o The language should be expressive and exten-
sible. It should be easy to code domain specific
concepts in a specification library.

Specifications should be easily translated into
Ada programs; only rarely used constructs are
allowed not to have a simple Ada representa-
tion.

The language should be easy to learn for an
Ada programmer. It should have few concepts
and very few concepts not present in Ada. Syn-
tax should be Ada-like.

The language should be executable, so that the
specifications can be used as a prototype and
in preparing test data for the final application.

2.3 Design rationale

Our first design decision is the semantic model on
which PUC is based; that is, whether PUC spec-
ifications will consist of Horn clauses, procedural
descriptions, etc., either purely or in combination
with other semantic models.

Some researchers in formal specifications have
advocated using both purely functional languages
[3, 6, 16] and logic-based languages (8] for specifi-
cations, based mainly on the separation of concerns
between what is intended and how it is achieved, es-
pecially in the management of data structures. The
expressive power of logic languages and functional
languages is not comparable, because logic lan-
guages can accomodate non-determinism whereas
functional languages can be higher order [16]. Even
though both logic and functional languages can be
executable, we agree with Hoare in that “a mod-
ern functional programming language can provide
a nice compromise between the abstract logic of a
requirements specification and the detailed resource
management provided by procedural programming”
[7, page 90]. These arguments have influenced our
decision to design a purely functional programming
language to specify Ada programs.

Most functional languages have mathematical
notation which makes them amenable to formal
proofs; however, they have been developed for
programmers with extensive mathematical back-
ground. Our goal in the design of PUC has been to
make a specification language for Ada programmers
who do not necessarily have this background. If for-
mal proofs are needed, PUC specifications can be
easily translated into recursion equations to prove
properties of them.

6109

Hence, both syntax and semantics of PUC are
similar to familiar programming constructs. For ex-
ample, instead of free algebras and pattern match-
ing, in PUC there are variant records and case ex-
pression. The few constructs of PUC that are not
present in Ada are explicit. For example, poly-
morphism is explicit in the declaration of polymor-
phic objects, and Curring (i.e., creating a higher or-
der function by partial parameterization) is accom-
plished using predefined functions instead of just
omitting parameters.

3 The Specification Language
PUC

This section presents the main aspects of PUC. A
technical report gives further details and a BNF
description of the grammar [12].

3.1 Overview

PUC is a purely functional programming language
with parametric polymorphism (2] and Ada-like
syntax designed to serve as a specification language
for Ada programs. Because PUC programs are exe-
cutable, we will call PUC either a specification lan-
guage or a programming language appropriate for
prototyping.

A PUC program consists of a sequence of decla-
rations of types and objects (functions and data).
Type declarations give a name to a type and are
needed to create new types. Object declarations
give a name to an object, which represents a func-
tion or data object; they are either like Ada function
definitions or like Ada assignments, where the defin-
ing symbol := is read as is equal by definition and
represents the relationship of that object to other
objects. This resuits in implied execution sequences
by virtue of the partial ordering of these object re-
lationships.

Example The following program consists only
of data object declarations. The value of root is
computed from the values of a, b, and c.

root := (= b + sqrt(bsb - 4#axc)) / 2;
a := 2,0;
b := ~-4.0;
c = 2.0;

Example The program below defines result to
be the factorial of 5. The program consists of two
object declarations: fact and result.

5-11

result := fact(S);
function fact (n: integer) return integer is
begin

if n = 0 then 1 else n » fact(n-1) end
end;

3.2 Data types

PUC is a strongly typed language, like Pascal or
Ada. However, PUC types are higher level that Ada
types. For example there are lists instead of arrays;
recursive records instead of records and accesses.
That means that PUC is easier to use, but not as
efficient as Ada. There are four kinds of data types
in PUC: scalar types, list types, record types, and
function types.

The scalar data types in PUC are: integer,
real, boolean, character, and enumerated types.
Numeric types have the usual arithmetic operators
(+ = * / rem); the boolean type has the operators:
not, and, and or; and relational operators (= /= <
<= > >=) are defined for scalar types. Precedence
rules are the same as Ada.

Lists are unbounded sequences of objects of the
same type. Constant lists are represented using
square brackets. The catenate operator is &, sub-
scripting and slicing (sublist) is done using paren-
theses. Strings are simply lists of characters.

Example Given the definition of nums, the fol-
lowing equalities hold.

nunms := {10,20,30,40,50,60,70,80,90,100];

nuas (4) = 40

nums(2..3) = [20,30]

[20,30,10] = nums(2..3) & nums(1..1)
nums(8..8) = [nums(8)]

length(num) = 10

"string" = [’s','t’,’r’,’i’.'n',’g’]

PUC records are very similar to Ada records;
component selection uses the typical dot notation.
Records can have variant parts and can be recur-
sive. Variant records have components that depend
on a tag, whose type must be boolean or an enu-
merated type. For example, type expr is a recursive
record with variants to represent arithmetic expres-
sions of integers.

type expr_kind is (number, plus, minus,
multiply, divide);
type expr is
record
case kind: expr_kind is
vhen number => val: integer;

6109

vwhen others => left, right: expr;
end;
end record;

The null record—compatible with all record
types and similar to Ada’s null access—is used
to build finite recursive records without variant
parts [10]. For example, the recursive record type
int._tree represents binary trees of integers. Note
the use of the type name as a constructor for con-
stant records.

type int_tree is
record
datum: integer;
left, right: int_tree;
end;
a_tree := int_tree’(5, null,
int_tree’(8,null,null));

In addition to the arithmetic, list, and record ex-
pressions, there are two structured expressions, if
and case. The syntax for these expressions is simi-
lar to the corresponding statements in Ada; the dif-
ference is that in place of a sequence of statements,
a single expression is expected.

3.3 Functions

Functions in PUC behave like mathematical func-
tions, mainly due to their declarative—as opposed
to imperative—nature. Table 1 shows the main
differences between Ada and PUC functions. Al-
though functions are declared using a syntax simi-
lar to Ada, the text between the begin and the end
is not a sequence of commands, but an expression.
Usually this expression will involve conditionals and
recursion.

Example Function eval evaluates an expression
represented with the type expr from Section 3.2.

function eval (exp: expr) return integer is
function eval_oper (exp: expr) is
1 := eval(exp.left);
r := eval(exp.right);

begin
case exp.kind is
when plus => 1 +r
when minus =1-r

when multiply => 1 * r
when divide =>1/r
end
end eval_oper;
begin
if exp.kind = number then exp.val
else eval_oper(exp) end
end eval;

5-12

Ada Functions

PUC Functions

Can cause side effects

Can be generic

Cannot return a function as result
Can have local types, functions,
procedures, variables, constants, ...
Body expressed using control flow
statements

No concept of side effects in PUC

Can be polymorphic and higher order

Fully higher order

Can have local types, functions and constants

No concept of control flow; only conditionals
and recursion

Table 1: Differences between Ada and PUC functions.

3.4 Polymorphism

An object is polymorphic if it can have more than
one type. PUC has parametric polymorphism,
where the type of an object can depend on another
type [2]. This is similar to generic type parame-
ters, although more general. PUC has polymorphic
functions and polymorphic record types. Polymor-
phic functions are declared by preceeding the types
of the parameters by a question mark (this declares
an implicit type parameter).

Example The following polymorphic functions
operate on lists of any base type.

function length (L: list of ?element) is
begin

it L = [J then 0 else 1 + length(rest(L)) end
end;

function cons (elem: ?a; L: list of ?a)
return list of a is
([elem] & L);

function find (value: 7a; L: list of 7a)
return list of a is
begin
if L= then L
elsif L(1) = value then L
else find(value, rest(L))
end
end;

Polymorphic records are used to define different
records given a base type; they are also called type
constructors. The example below defines a type
constructor for binary trees which is used in the
definition of a binary tree of integers.

type tree of elem is

record

datum : elem;

left, right: tree of elem;
end;

6109

type int_tree is tree of integer;

Polymorphic types are usually used in conjunc-
tion with polymorphic functions that operate on the
type. For example, function traverse_tree builds
a list from the in-order traversal of a binary tree.

function traverse_tree (t: tree of 7elem)
return list of elem is

begin

if t = null then []

else traverse_tree(t.left) & [t.datum] &

traverse_tree(t.right)

end

end;

3.5 Higher order functions

Higher order functions are those that have functions
as parameters or compute a function as a result. A
limited form of higher order functions is present in
languages like FORTRAN or Pascal, where it is pos-
gible to specify a subprogram passed as a parameter
to another subprogram. PUC is fully higher order
because it imposes no restrictions on the kinds of
higher order functions (e.g., a function can return
a higher order function). A very limited form of
higher order functions can be simulated in Ada us-
ing generics. .

Usually higher order functions are polymorphic
because they operate on polymorphic data struc-
tures (e.g., lists), but these two language features
are independent. Figure 1 shows the definition
of some standard higher order functions which are
useful in defining other functions without explic-
itly writing the whole functions; that is, the use
of higher order functions enhances reusability. Fig-
ure 2 shows several functions defined in terms of
polymorphic functions; some of them were previ-
ously defined explicitly.

5-13

-— APPLY - a list with the application of f to the elements of L
function apply (f: function(?a) return 7b; L: list of ?a) return list of b is
begin
if L = [J then [] else [£(L(1))] & apply(f, rest(L)) end
end;

-- FOLD_R - the right folding of list L with function £
function fold_r (f: function(?a,?b) return ?b; init: ?b; L:list of ?7a) return b is
begin
if L = [J then init else f(L(1), fold_r(f,init,rest(L))) end
end;

-~ FOLD_R_1 - the right folding of noneapty list L with function £
function fold_r_1 (f: function(Za,?a) return 7a; L:list of ?a) return is
begin

fold_r (£, L(1), rest(L))
end;

-- CURRY - a function like f, but with the first parameter fixed
function curry (f: function(?a,?b) return 7c; paraml: ?a) is
begin

function (param2:b) return c is f(paramil,param2)
end curry;

-- FOLD_TREE - the folding of binary tree t with function f
function fold_tree (f: function(7b,7a,?b) return ?b; init: ?b; t: tree of ?a) return b is
begin
if t = null then init
else f(fold_tree(f,init,t.left), t.datum, fold_tree(f,init,t.right}) end
end fold_tree;

Figure 1: Some standard polymorphic functions.

function traverse_tree (t: tree of 7a) return list of a is

function combine (1:list of a; elem:a; r:list of a) return list of a is (1 & [elem] & r);
begin

fold_tree{combine, [, t)
end traverse_tree;

function sum_of_nodes (t: tree of integer) return integer is

function add3 (1, elem, r: integer) return integer is (1 + elem + r);
begin .

fold_tree(add3, 0, t)
end sum_of _nodes;

function concat (L: list of list of ?a) return list of a is
begin

told_r("g", O, L)
end;

Figure 2: Functions defined using polymorphic functions.

5-14
6109

4 Developing Ada Programs
with PUC

There are several approaches for developing Ada
programs using PUC. One is to use PUC only as a
formal documentation aid, taking advantage of its
defined semantics, but not its executability. Using
PUC simply as a notation requires in principle no
software tool, but this is very limited; at least a
parser and consistency checker has to be provided.
But if there is a parser then it is relatively easy to
build a translator or interpreter, so that specifica-
tions in PUC can be used as prototypes.

Another way of using PUC specifications, is to
generate Ada implementations by means of a semi-
automatic translation, in which a programmer de-
cides implementation issues and can even modify
the generated code. This choice seems to be more
attractive than the others, because it provides a
smooth transition from specifications to programs,
but the caveat is that not all PUC constructs have
a simple representation in Ada (e.g., Ada has no
higher order functions).

These approaches are not fully formal develop-
ment systems in the sense that it is still possible to
write a program inconsistent with its specification.
While this is not optimal, we think that our soft-
ware engineering environment is not mature enough
for a fully formal system, and that experience with
semi-formal specifications (and development) is re-
quired before a fully formal development system can
be used effectively.

In order to provide a translator from PUC to Ada
it is first necessary to determine a set of transla-
tion rules that will preserve the semantics of the
specification. Although this set will not be suffi-
cient to translate any PUC program into Ada, we
need to be able to translate most PUC programs,
or else the method is impractical. There is an addi-
tional restriction we impose on the system: to facili-
tate manual modification of the generated Ada code
(e.g., for optimization or maintainance) we want the
generated Ada code to resemble the PUC specifica-
tion.

Since PUC is syntacticaily similar to Ada, some
PUC constructs require simple translations or even
no translation at all. For example, enumerated
types and simple record types are almost identical
in both languages; recursive record types are trans-
lated into an access type and a record containing
access fields. However, not all translations are so
simple, because the semantics of PUC and Ada are

quite different. It is particulary difficult to pro-
vide general and efficient translations for the use of
(garbage collected) heap memory, lists, higher order
functions, and polymorphism.

4.1 Memory management and func-
tions

PUC functions can be translated to Ada functions
or procedures. If procedures are used, there are
choices in the parameter modes used (i.e., IN, OUT,
IN OUT). It is not always possible to select any of
the choices, though, because they depend on the
way data is manipulated in the calling functions.

This brings up the issue of how memory is man-
aged. The semantics of functional languages with
automatic allocation and deallocation of memory is
quite different from that of Ada. In Ada only local
variables are allocated and deallocated automati-
cally, because of the activation stack model used,
whereas in functional languages all memory is allo-
cated and deallocated automatically. An immediate
consequence is that we will try to allocate as much
memory as possible in the form of local variables,
avoiding the use of the Ada heap. To do that we
have to recognize when data can be stored safely in
the stack (i.e., when we can be sure that data will
not outlive the function call where the value was
declared). One of the problems of this approach is
that it complicates sharing.

Another important issue in the management of
memory is when to use variables. In functional lan-
guages there are no updatable variables and that
means that every value computed needs newly allo-
cated memory. We want to take advantage of Ada
variables to avoid these allocations, even if they
ocurr in the activation stack. For example, tail re-
cursion can be translated into loops that will use
variables for the information that is passed to the
next activation (i.e., iteration).

4.2 Translating lists

There are several ways to translate lists into Ada,
based on arrays or linked lists. When lists have a
fixed known length, they can be translated into Ada
arrays. If the length is not fixed but there is a rea-
sonable upper bound, lists can be represented by a
record with an array and a count of used elements.
When the length of the lists is highly variable or not
bounded then a linked list representation is used,
using a predefined generic package. In the case of
strings, it is desirable to use Ada strings, so that

5-15

6109

string variables are compatible with string literals.
Array representations have advantages over linked
lists because they can be more efficient and gener-
ated Ada code resembles closely the PUC code.

It is very difficult for the translator to detect
whether a list can be represented by an array or
not. On the other hand, if an array representation
is chosen some upper bound has to be provided, so
this translation cannot be done automatically. One
solution to this problem is to provide a default rep-
resentation with linked lists and let the programmer
change that default. The default representation for
strings are Ada strings. For each type that requires
a non-default representation, the programmer has
to specify which translation is desired. This trans-
lation applies to all objects of the type.

4.3 Translating higher order func-
tions

Higher order functions are used often in specifica-
tions, because they are useful in representing ab-
stract operations. Ada generics can represent uses
of higher order functions in the particular case of
functions passed as parameters, provided that all
function parameters are statically known. This
translation requires defining the function as generic
and providing the corresponding instantiations.

It is hard to make a general translator for higher
order functions. However, most programs use
higher order functions that either satisfy the re-
strictions in the above paragraphs, or belong to a
standard predefined set (e.g., the examples in Fig-
ure 1.) For the first case, the translation scheme
described suffices. For the second case it is possi-
ble to have a set of ad-hoc translation rules for the
standard higher order functions. These rules are
semantic-preserving transformations coded into the
translator [15], hence programs written in terms of
standard higher order functions can be automati-
cally translated. The system can be extended by
adding translation rules for domain-specific higher
order functions.

Function poly evaluates a polynomial
.,8n] of its coeffi-

Example
represented by the list [aq, ay, ..
cients, using the factorization

).

function poly (as: list of real; x: real) is
function combine (a_i, accum: real) is
(a_i + x * accum);
begin

P(z)=ag+ z(a1 + z(as +...zan ..

6109

fold_r_1(combine, as)
end; :

The use of function fold r_1 {defined in Figure 1)
can be transformed into a loop using the rule for
foldr._1. From the definition of foldr.1, if as
has only one element, then the result is equal to
this element. If as has more than one element (say
as = [first] & rest) then the result is equal to

combine(first, fold_r_1(combine,rest))

That is, we can first compute the folding of the
rest and then combine the result with the first
element. This can be achieved by a loop that exam-
ines the elements in reverse order and accumulates
the results of the folding. The first time the list
will have only one element that is used to initialize
the accumulator. Since we know that the loop will
iterate 1ength(as)~1 times we can use a for-loop.

accum := as(length(as));

for i in reverse 1 .. length(as)-1 loop
result := combine(as(i), result);

end loop;

To write the above loop in Ada we need to provide
an implementation for lists and perform the corre-
sponding translation on them. Note that this loop
will be inefficient with linked implementations for
lists, because fold.r_1 accesses the elements in re-
verse order. Now we can expand the call to combine
and produce a complete Ada function.

4.4 Translating polymorphism

Some polymorphic functions can be translated into
generic functions with type variables. This is not
true of all polymorphic functions, because paramet-
ric polymorphism is a type system more powerful
than generic types. The restriction is that all uses of
a polymorphic function must be monomorphic (i.e.,
it should be possible to assign a static type to every
use of a polymorphic function). That means that a
polymorphic function cannot call another function
using polymorphic parameters. This restriction is
in principle rather severe, but does not apply to pre-
defined operators and functions whose invocations
are translated by ad-hoc rules.

The difficulty with this approach is that all func-
tions on the polymorphic type have to be explictly
declared. For example, if we have a function to op-
erate on lists, all list primitives used have to be de-
clared, and the function can be generic on both the

5-16

generic
type a;
type list_of_a;
with function empty_list return list_of_a;
with function first (1: list_of_a) return a;
with function rest

(1: list_of_a) return list_of_a;

function find (value: a; L: list_of_a) return list_of_a is

result: list_of_a;
begin
result := L;

ghile not((result = empty_list) or else (first(result) = value)) loop

result := rest(result);
end loop;
return result;
end find;

Figure 3: Find the longest sublist containing value.

base type and the list type. Figure 3 is the transla-
tion to Ada of function find from Section 3.4.

Polymorphic records can be translated into sev-
eral record declarations, one for each instantiation.
As with functions, all uses of polymorphic records
have to be monomorphic, or else the translation
cannot be done automatically.

Example The polymorphic function fold.l
folds a list into one value by combining values pair-
wise from the left of the list. Since fold 1 is also
higher order, the techniques discussed above apply
as well.

function fold_l (f: function(?a,?b) return 7b;
accum: ?b; L: list of 7a) return b is
begin '
if L = [] then accum
else fold_1(f, f(L(1),accum), rest(L)) end
end;

Fold_1l can be transformed into a while-loop (it is
tail recursive). Consider the following call to fold.1

result := fold_1(f, value, a_list);

From the definition of fold.l, if alist is the
empty list [J, then result is equal to value.
If a_list is not empty (say a-list = [first] &
rest) then the result is equal to

fold_l1(f, f(first,value), rest)

so that this is a call to the same function, in which
both value and a_list are updated accordingly.
Hence the following while-loop in pseudo-Ada is a
valid translation:

result ;= value;

aux_list := a_list;

ghile aux_list /= [J loop
result := f(aux_list(1), result);
aux_list := rest(aux_list});

end loop;

An obvious efficiency improvement is to use an in-
dex variable, updating this variable instead of copy-
ing a list. Furthermore, since the loop will iterate
length(a_list) times we can use a for-loop.

result := value;

for j in 1..length(a.list) loop
result := f(a_list(j), result);

end loop;

To write the above loop in Ada we need to provide
an implementation for lists and perform the corre-
sponding translation on them. Unlike the transla-
tion for fold_r_1, this loop is efficient with linked
implementations for lists because the elements are
accessed in order.

4.5 Example: A simplified telemetry
processor

A telemetry processor is a program that interprets
telemetry data sent from a spacecraft. Satellite
telemetry data is a sequence of samples, each con-
taining a set of measures representing the status of
the spacecraft systems [4]. Data is transmitted to a
ground station in binary form, packed in fixed-size
bit matrices called master frames.

The telemetry processor takes this coded data
and produces calibrated data in engineering units

5-17

6109

(e.g., meters, Watts) in floating point format. The
calibration is done by extracting each measure from
the master frame and evaluating a polynomial on its
value. Besides, some measures require maximum
and minimum limit check. The input to a teleme-
try processor is a master frame and a set of descrip-
tions of measures. The output is a set of calibrated
measures. These sets will be represented by lists.

The following PUC type declaration represents a
master frame as a list of lists of bits.

type bit is (On, 0£ff);
type row is list of bit;
type master_frame is list of row;

Each row in the master frame is a fixed-length
bitstring considered to be divided into several bit-
strings of various lengths representing measures.
Measures are described by the following attributes:
name, position in the master frame, and calibration
parameters. The position in the master frame in-
cludes the row number and the first and last bit po-
sitions within the row. Calibration parameters for
each measure are: coefficients for the polynomial, a
check-range flag, and minimum and maximum val-
ues (used if the flag is true.)

type measure_description is

record
name : string;
rov_num : integer;
first_bit : integer;
last_bit : integer;
coeffs : liat of real;
do_check : boolean;
min_value : real;
max_value : real;

end;

Calibrated measures are described by the name
of the measure, the result of the polynomial evalu-
ation, and a range check code that is either Small,
Inrange, Large, or No_check, depending on the
range check of the value.

type 'range_code is (Small, In_range,
Large, No_check);
type calibrated_measure is

record
name : string;
value : real;
range : range_code;
end;

The main function of the specification is cali-
bratemaster, which returns a list of calibrated

6109

measures given the master frame and a list of mea-
sure descriptions. It is defined apply’ing funec-
tion calibrate.measure to each measure descrip-
tion (Figure 4.) Function calibrate measure uses
function extract to obtain the bitstring of the mea-
sure, function to.number to convert from binary
to floating point, and function poly.eval to evalu-
ate the corresponding polynomial. The range check
code is computed with a nested if expression.

To generate an Ada program we need to provide
translations for functions like apply, curry, etc.
We also have to decide how each list will be im-
plemented. Figure 5 is the main program in Ada.
The list of measure descriptions in represented by
an array because the number of measure decrip-
tions is fixed for each satellite. The apply function
is translated into a for-loop because the size of the
list is a constant. The curry function is not explic-
itly translated: it is only a notation to provide the
additional parameter within the loop. An explicit
list of calibrated measures is built in local variable
result, which is the returned value.

5 Conclusions

We have presented a specification language suit-
able for a specific class of software engineering
environments using Ada. The main purpose of
this language is to bridge the gap between very
high level specifications and detailed algorithms and
data structures, so we have attempted to define con-
structs that are similar to those in Ada, especially
in data structures. On the other hand, the need to
represent application level concepts has led us to in-
clude features like higher order functions and poly-
mophism, to increase the reusability of the specifi-
cations.

We had to make several trade-offs in the design
of PUC, because we wanted expressiveness, sim-
plicity and similarity to Ada. We decided not to
include algebraic data types and pattern matching
(present in several functional languages); the more
familiar concepts of variant record and case expres-
sion were used instead. We included parametric
polymorphism, higher order functions, and Curring
(i.e., partial parametrization of functions), but since
these are advanced features, we wanted them to
be explicit. Having these constructs complicated
the process of translation from PUC to Ada, but
they provided the abstraction mechanisms needed
in a specification language. Hence, we studied semi-
automatic methods of translation.

5-18

function calibrate_master (master : master_frame;
measures: list of measure_description)
return list of calibrated_measure is
begin
apply(curry(calibrate_measure,master), measures)
end;

function calibrate_measure (master: master_frame; measure: measure_description)
return calibrated_measure is

bits := extract(master, measure);
value := poly_eval(measure.coeffs, to_number(bits));

code := if not (measure.do_check) then No_check
elsif value < measure.min_value then Small
elsif value > measure.max_value then Large
else In_range end;
begin
calibrated_measure’ (measure.name, value, code)
end calibrate_measure;

Figure 4: Calibration functions of telemetry processor.

function calibrate_master (master : in master_frame;
measures : in list_of_measure_description)
return list_of_calibrated measure is
result: list_of_calibrated_measure;
begin
for j in measures’range loop
result(j) := calibrate_measure(master, measures(j));
end loop;
return result;
end;

Figure 5: Main function in Ada.

6109

A specification language is not useful unless there
is a software development method that will include
its use. We have presented two non-exclusive meth-
ods: use the specifications as a prototype and trans-
form the specification into an Ada program. Both
approaches require the development of supporting
tools. The language, along with its related meth-
ods and tools, will provide for a practical semi-
formal software engineering environment. However,
we have not tested extensively the use of functional
languages in the specification of large scientific soft-
ware in Ada.

Acknowledgements

Thanks to Sergio Cardenas-Garcia and Eduardo
Ostertag for their helpful comments.

References

(1] Grady Booch. Software Engineering with Ada,
The Benjamin/Cummins Publishing Com-
pany, Inc., Menlo Park, California, 1987.

Luca Cardelli. Basic Polymorphic Type Check-
ing, Science of Computer Programming, Vol. 8,
1987, pp. 147-172.

(2l

[3] William D. Clinger and Ralph L. London. A
Role for Functional Languages in Specifica-
tions, Proc. Fourth Int’l Workshop on Software
Specification and Design, CS Press, Los Alami-

tos, CA, 1987, pp. 2-7.

General Electric Company, Valey Forge Space
Division. Software Specifications for Ada Re-
Development Project (DSCS-III Application),
Philadelphia, Pennsylvania, 17 June 1982.

John V. Guttag, James J. Horning, and
Jeanette M. Wing. The Larch Family of Speci-
fication Languages, /EEE Software, September
1985, pp. 24-36.

(6] Peter Henderson. Functional Programming,
Formal Specification and Rapid Prototyping,
IEEE Trans. Soft. Eng., Vol. SE-12, No. 2,
February 1986, pp. 241-250.

C.A.R. Hoare. An Overview of Some Formal
Methods for Program Design, [EEE Computer,
September 1987, pp. 85-91.

7

6109

(8]

[10]

[11]

[12]

(13]

14]

(15]

[16]

R. Kowalski. The Relation Between Logic Pro-
gramming and Logic Specification, Mathemat-
ical Logic and Programming Languages, eds.
C.A.R. Hoare and J.C. Shepherdson, Prentice-
Hall, Englewood Cliffs, N.J., 1984, pp. 11-28.

David C. Luckham and Freidrich W. von
Henke. An Overview of Anna, a Specifica-
tion Language for Ada, JEEE Software, March
1985, pp. 9-22.

R. Morrison, A.L. Brown, R. Carrok, R.C.H.
Connor, A. Dearle, and M.P. Atkinson. Poly-
morphism, Persistence and Software Re-Use
in a Strongly Typed Object-Oriented Environ-
ment, Software Engineering Journal, Novem-
ber 1987, pp. 199-204.

Norman Ramsey. Developing Formally Verified
Ada Programs, ACM SIGSOFT FEngineering
Notes, Vol. 14, No. 3. May 1989, pp. 257-265.

Pablo Straub and Marvin V. Zelkowitz. PUC:
A Functional Specification Language for Ada.
University of Maryland, Department of Com-
puter Science, Technical Report CS-TR-2404,
UMIACS-TR-90-17, February 1990.

Pablo A. Straub. Bias and Design Decisions
in Software Specifications. University of Mary-
land, Department of Computer Science, Tech-
nical Report CS-TR-2476, UMIACS-TR-90-
72, May 1990.

Robert B. Terrwilliger and Roy H. Campbell.
An Early Report on ENCOMPASS, 10th Inter-
national Conference on Software Engineering,
April 11-15, 1988, Singapore, IEEE Computer
Society Press.

Simon Thomson. Functional Program-
ming: Executable Specifications and Program
Transformation, ACM SIGSOFT Engineering
Notes, Vol. 14, No. 3, May 1989, pp. 287-290.

D.A. Turner. Functional Programs as Exe-
cutable Specifications, Mathematica! Logic and
Programming Languages, eds. C.A.R. Hoare
and J.C. Shepherdson, Prentice-Hall, Engle-
wood Cliffs, N.J., 1984, pp. 29-54.

SOFTWARE RECLAMATION:
Improving Post-Deveiopment Reusability

John W. Bailey and Victor R. Basiii

The University of Maryland Department of Computer Science
College Park, Maryland 20742

Abstract

This paper dascribes part ot a multi-year study of
software reuse being performed. at the University of Maryiand.
The part of the study which is raported hare explores
techniques for the transformation of Ada programs which
preserva function but which result In program companents
that are more independent, and presumably therefors, more
reusable. Goals for the larger study include a precise
specification of the transformation technique and its
application in a large development organization. Expected
rasuils of the larger study, which are partially covered here,
are the identification of reuse promoters and inhibitors both
in the problem space and in the solution space, the
deveilopment of a set of metrics which can be appiled to both
developing and compieted software to reveal the degree ot
reusability which can be expected of that software, and the
development of guidelinas for both deveilopers and reviewers of
software which can help assure that the deveioped software
will be as reusable as desired. -

The advantages of lransforming existing software into
reusable components, rather than crealing reusable
components as an independent activity, include: 1) software
development organizations often have an archive ol previous
projects which can yield reusable components, 2) developers
of angoing projects do not need to adjust to new and possibly
unproven methods in an attempt o develop reusable
components, 50 Mo risk or davelopment overhead is introduced,
3) transformation work can be accomplished in parallel with
line developments but be separately funded (this is
particularly applicable when software is being developed for
an outside customer who may not be willing to sustain the
additional costs and risks of developing reusable coda), 4} the
resulting components are guaranteed lo be relevant to the
application area, and 5) the cost is low and controliabie.

Introduction

Broadly defined, software reusa includes more than the
repealed usa of particular code moduies. Other lile cycle
products such as specifications or test pians can bae reused,
soitware development processes such as verilication
lechniques or cost modeling methods are reusable, and even
intangible products such as ideas and experience contribute 1o
the total picture of reuse {1,2]. Although process and lool
reuse is common practice, lite cycle product reuse is still in
ils infancy. UNtimately, reuse of early lifecycle products
might provide the largest payoff. For the near term, however,

gains can be realized and further Qom can be guided by
understanding how software can be developed with a minimum
ot newiy-generated source lines of code.

The work covered in this paper includes a feasibility study
and some exampies of generalizing, by transforming, software
source code after it has been initially developed, in order to
improve its reusability. Thae term software reclamation has
been chosen for this activity since it does not amount to the
development of but rather to tha distillation of existing
software. (Reclamation is defined in the dictionary as
obtaining something from used products or rastoring
something to usefulness [3].) By exploring the ability to
modify and generalize existing softwars, characterizations of
that software can be sxpressed which relate to its reusability,
which in tum is reiated to its maintainability and portability.
This study includes applying these generalizations to several
small example programs, 1o medium sized programs from
dilferent organizations, and to saveral fairly large programs
from a single organization.

Earlier work has examined the principle of software
reclamation through generic axtraction with small examples.
This has reveaied the various lavels of difficulty which are
associated with generalizing various kinds of Ada dependencies.
For example, it is easier to generalize a dependency that exisis
on encapsulated data than on visibie data, and it is easier to
generalize a dependancy on a visible array type than on a
visible record type. Following that work, some medium-sized
examples of existing software were analyzed for potentiai
generalization. The limited success of these efforts revealed
additional guidelines for development as well as limitations of
the technique. Summarias of this preceding work appear in
the lollowing sections.

Used as data for the current research is Ada software from
the NASA Goddard Space Flight Canter which was written over
the past three years 1o perform spacecraft simuiations. Three
programs, each on the order of 100,000 (editor) lines, were
sludied. Software code reusa at NASA/GSFC has been practicad
for many years, originally with Fortran developments, and
more recantly with Ada. Since transitioning to Ada.
management has observed a steadily increasing amount of
software reuse. One goal which is introduced here but which
will be addressed in more detail in he larger study is the
understanding of the nature of the reuse being practiced there
and to examine the reasons for the improvement seen with Ada.
Another goal of this as weil as the larger study is o compare
the guidelines derived from the examination of how diiferent
programs yield 10 or resist generatization. Several questions

8th Annual Nationat Contference on Ada Technology 1990

6109

are considered through this comparison®including the
universality of guidelines derived from a single program and
whether the effect of the application domain, or problem
space, on softwara reusability can be distinguished from the
affect of the implemantation, or solution space.

Superficially, therefore, this paper describes a technique
tor generalizing existing Ada software through the use of the
generic faature. However, the success and practicality of this
techniqua is greatly affected by the style of the software being
transformed. The examination of what characterizations of
software are correlated with transformability has led to the
derivation of software development and ravigw guidelines. It
appears that most, it not all, of the guidelines suggested by
this examination are consistent with good programming
practices as suggested by other studies.

The Basic Tachni

By studying the dependencies among software alements at
he code level, a determination can be made of the reusability
ot those alements in other contexts. For axample, it a
component of a program uses or depends upon another
component, then it wouid not normally be reusabls in another
program wherae that other componaent was not aiso present. On
the other hand, a component of a software program wnich does
not depend on any other software can be used. in theory at
least, in any arbitrary context. This study concentrates oniy
on the theoretical reusability of a component of software,
which is defined here as the amount of dependsnce that exists
between that component and other software components. Thus,
it is concarned only with tha syntax of reusable software. it
doas not directly address issuas of practicai reusability, such
as whather a reusable component is useful enough to encourage
othar developers 1o reuse it instead of redeveloping its
tunction. The goal of the procass is to identify and axtract the
essential functionality from a program so that this extracted
essence is not dependent on axternal deciarations, information,
or ather knowiedge. Transformations are needed lo derive
such components from existing software systems since
inter-component dependencies arise naturally from the
customary design decomposition and impiementation processes
usad for software development.

|deal axamples of reusable software code components can
be defined as those which have no dependancies on other
software. Short of complete indepandence, any dependencies
which do exist provide a way of quantilying the reusability of
the componenis. [n other words, ihe reusability of a
componant can be thought of as inversely proportional (o the
amount of extemal dependence required by that component.
However, some or ali of that dependence may be removable
through transformation Dy generalizing the component. A
measure of 4 components dependance on its extemals which
quantifigs the difficuity of removing that dependencs through
ransformation and generalization is slightly different from
simply measuring the dependence directly, and is more
specifically appropriate (o this study. The amoumt of such
transtormation constitutes a usaful indication of the effort 0
reuse a body of software.

Both the transformation affort and the degree of success
with performing 1he Iranstarms can vary from one axample to
the next. The identification of guidetines for developers and
raviawers was made possibie by obsaerving whal promoted or
impeded the transformanons. These guideiines can aiso help in
the selection of rausable or transformable parts rom existing

software. Since dependencies among software components can
typically be detarmined from the software design, many of the
guidelines apply to the design phasa of the lile cycle, aliowing
earlier analysis of reusability and enabling possibie
corractive action 10 be taken before a design is implemented.
Although the guideiines are writtan with raspect 1o the
developmant and reuse of systems written in the Ada language.
since Ada is the medium for this study, most apply in genarai
to software development in any language.

One measure of the extent of the transformation required
is the number of lines of code that need (o be added, altered, or
deleted {4]. However, some modifications requira new
constructs 10 be added to the software while othars marely
require@ syntactic adjustments that could be performed
automatically. For this reason, a more accurate measure
weighs the changes by their difficuity. A component can
contain dependancies on extemals that are so intractable that
ramoving them would mean also removing ail of the useful
functionaiity of the component. Such transformations are not
cost-affective. In these cases, either the component in
question must be reused in conjunction with one or more of the
components on which it depands, or it cannot be generalized
into an independenty reusable one. Therefore, for any given
component, there is a possibility that it contains some
dependencies on externais which can be aliminated through
transformation and aiso a possibility that it contains some
dependencies which cannot be eliminated.

To Quide the transformations, a model is used which
distinguishes between software function and the deciarations
on which that function is performed. [n an object-oriented
program (for here, a program which uses data abstraction),
data deciarations and associated functionality are grouped into
the same component. This component itseif becomes the
dactaration of another object. This means the function /
daclaration distinction can be thought of as occurring on
multipie leveis. The internal data deciarations of an object can
be distinguished from the construction and access operations
supplied 10 extermnal users of the object, and the object as a
whole can be distinguished from its external usa which applies
additionat function (possibly estabiishing yet another, higher

lavel object). The distinction between functions and objects is
more obvious where a program is not object-orientad since
decfarations are not grouped with their associated
functionality, but rather are established globaily within the
program.

At aach levei, declarations are seen as application-specific
while the functions performed on them are seen as the
potentially generalizable and reusable parts of a program.
This may appear backwards initially, since data abstractions
composed of both declarations and functions are often seen as
reysable components. Howaever, for consistency here,
functions and deciarations within a data abstraction are viewed
as separable in the same way as functions which depend on
deciarations contained in external components are separable
from those dectarations. In use, the reusable, independent
functionai componen's are composed with application-specific
deciarations to form objects, which can further be composed
with ather independent functional components to implement an
even larger portion of the overail program.

Figure 1 shows one way of representing this. All the gvals
are objects. The dark ones are primitives which have
predefined operations, such as integer or Boolean. The white
ovals represent program-supplied !unctionality which is
composed wiih their contained objects o form a higher level

8th Annual Nationai Conference on Ada Technology 1990

6109

5-22

object. The intent of the model is to distinguish this program-
specific functionality and to attempt to represant it
independently of the objects upon which it acts.

acable functo
simple object]

applicable function na object

reguiting object ting object

Figure 1.

Some Ada which might be represantad as in the above
figure might be:

package Counter is -- rasulting object
procedure Resec:

-~ applicable function ...
procedure Increment:

function Current_Value return Nactural;
end Countaer;

package body Counter is
Count : Natural := 0;

procedure Reset is
begin

Count. := 0;
end Reset:
p dure Incr t is
begin

Count := Count + 1;
end Increment:
function Current_Value return Natural is
begin

return Count:
end Curreant_Value;

end Countec:

~- simple object

package Max_Count i3
procedure Reset:;
procedure Increment:
function Current_Value return Natural;
function Max return Natural:;

end Max_Count;

-~ resuiting object
~- applicable function ...

with Counter;
package body Max_Count is
Max_Val : Natural := 0:
procedure Reset i3
begin
Counter.Reset:
and Resect:
procedure Increment ias
begin
Counter. Incremanc;
if Max_Val < Councer.Current_Value then
Max_:Yal := Counter.Current_Value:
and if; -
end I[ncrement;
function Current_Value recurn Natucal is
begin
recurn Counter.Current_Value:
end Currenc _Value:

-~ additionai object

function Max recurn Natural is
begin
return Max Val:
end Max:
end Max_Count;

In this example, the objects are properly ancapsulated.
though, they might not have been. If, for axample, the simple
objects were declared in saparate components from their
applicable functions, the resuit could have been the same
(although the diagram might look different). In actuai
practice, Ada programs are deveioped with a combination of
ancapsulated object-operation groups as well as separately
declared object-operation groups. Often the lowest lavels are
encapsulatad while the higher level and larger objects tend t0
be saparate from their applicable function. Perhaps in the
ideal case. all objects wouid be encapsulated with their applied
function since encapsulation usually makes the process of
axiracting the functionality at a later time easier. This,
tharefora, becomes one of the guidelines revealed by this
model.

if the above example were transformed lo separate the
functionality from each object, the following set of components
might be derived:

genaric
type Count_Object is (<>):
package Gen_Counter is -- resuiting object
procedure Reset: -- applicable function ...
procedure Increment:
function Current_Value return Count_Object’
end Gen_Counter:

package body Gen_Counter is
Count : Count_Object -- simple object
= Count_Object ‘First:
procedure Reset is

begin
Count := Count_Object‘First:
end Reset:
procedure Increment is
begin

Count := Count_Object’Succ (Count):
end [ncrement;
function Current _Value recurn Count_Object is
begin
cecurn Count:
end Current_Value:
end Gen_Counter:

generic
cype Count_Object is (<>};

package Gen_Max_Count is -~ fesulting object
procedure Reset: -- applicable function ...
procedure Increment:
function Current_Value recturn Count _Object:
function Max return Count _Object:

end Gen_Max_Count;

wich Gen_Councer:;
package body Gen_Max_Count L3
Max_val : Count_Object -- additional object
:= Count_Object 'First:
package Counter is
new Gen _Counter {(Count _0bjecc):

8th Annual National Conference on Ada Technology 1990

6109

5-23

procedure Reset is
begin
Councaer.Resec;
end Reset:
procedure Incremenc is
begin
Councer.InCrement’
if Max_Val < Counter.Current_Value then
Max_Val := Counter.Current_Value;

end i£;
end Increment;

function Current_Value return Natural is

begin
retuzrn Counter.Current_Value;

end Current_Value:
function Max recurn Natural is
begin
cetuzn Max _Val;
end Max;
end Gen_Max_Count;

with Gen_Max_Count:
procedure Max_Count_User is
package Max_Count is
new Gen_Max_Count (Natural):
begin
Max_Count.Reset;
Max_Count.Increment;

end Max_Count User;

Note that the end user cbtains the same functionality that a
user of Max_Count has, but the softwars now ailows the
primitive object Natural to be supplied axternally to the
algorithms that will apply to it. Further, the user could have
obtained anaiogous functionality for any discrate type simply
by pairing the general object with a different type (using a
different generic instantiation).

This model is somewhat analogous (0 the one used in
Smalitalk programming where objects are assembled from
other objects plus programmer-supplied specifics. However,
it is meant to apply more generally 10 Ada and othar languages
that do not have support for dynamic binding and full
inheritance, features that are in general unavailable when
strong static type checking is required. Instead, Ada offers the
genaeric feature which can be used as shown here to partially
offsat the constraints imposed by static checking.

Applying this model to existing software means that any
linas ot code which represent reusable functionality must be
paramaeterized with generic formal parameters in order to
make them independent from their surrounding declaration
space (il they are not already independent). Generics that are
extractad by generalizing existing program units, through the
removal of their dependence on external declarations, can then
be offered as independently reusable components for other
applications.

Untortunately, declarative depandencs is only one of Ihe
ways that a program unit can depend on its externai
anvironment. Removing l.1e compiler-detectable deciarauve
dependencies by producing a genenc unit is no guarantee that
the new unit will actually be independent. There can be
dependencies on data -alues [hat are related 10 values in
neighboring software, or even dependencies an protocols of

operation that are foilowed at the point where a resource was
originally used but which could be violated at a point of later
reuse. (An example of this kind of dependency is described in
the Measurement section.) To be compiete, the transformation
process would need lo identify and remove these other typas of
dependence as well as the dectarative dependence. Aithough
guidelines have been idantifled by this study which can reducs
the possibility for these other types of dependencias to enter a
system, this work only concentrates on mechanisms to
measure and ramove deciarative dependenca.

More Exampies

In a language with strong static type checking, such as Ada.
any information exchanged between communicating program
units must be of some type which is available to both units.
Since Ada enforces name equivalence of types, where a lype
name and not just the underlying structure of a type
introduces a new and distinct type, the deciaration of the type
usad o pass information between units must be visibla to both
of those units. The user of a resource, therefore, is
constrained to be in the scope of ail type declarations usad in
the interface of that resource. In a language with a fixed set of
types this is not a problem since ail possible types will be
globaily available to both the resource and its users.
However, in 3 language which allows user-declared types andg
anforces strong static type checking of those types, any
intar-component communication with such types must be
performed in the scope of thosa programmar-defined
daciarations. This means that the coupling between two
communicaling components increases from data coupling to
extemnal coupling (or from level two to level five on the
traditional seven-point scale of Myers, where levei one is the
lowest lgvel of coupling) [5].

Consider, for example, project-spaecific type daclarations
which oftan appear 3t low, commonly visible leveis in a
system. Rasources which build upon those deciarations can
then be used in tursn by higher level application-specific
components. If a programmer attempts to reusa those
intermediate-iavel resourcaes in a new context, it is necassary
10 also reuse the low-lgvel deciarations on which they are
built. This may not be acceptable, sinca combining savera!
rasourcas from diffarant original contexts means that the set
of low-ievel type deciarations needed can be extensive and not
generally compatible. This situation can occur whether or not
data is ancapsulaled wilh its applicable function. but for
clarity, and to contrast with the previous exampies, it is
shown here with the data and its operations deciared
separaiely.

For exampile, imagine that two existing programs each
contain one of the [following pairs of compilation units:
-- First program contains first pair:
package Vs_1l is
type Variable_String is

record
Daca : String (1..80):
Lengch : Natural;

end record:
function Variable_String_from_Userc
recurn Variable_string;
end Vs_1:

8th Annual Nationai Conferance on Ada Technology 1990

6109

5-24

with Vs_l.
package Pm_l is
type Phone_Message is

record
From : Vs_l.Variable_string;
To : Vs_l.Variable_string;
Data : Vs_l.Variable_String:
end record;

function Phone_Message_From User
recurn Phone_Message:

end Pm_1;

—~ Second program contains second pair:
package Vs_2 is
type Variable_String is
cecord
Data : String (1..250) := (others=>' '}/
Length: Natural := 0;
and record;
function Variable_String_From User
return Variable_String:

end Vs_2:

with Va_2;
package Mm_2 is
type Mail_Message is

record
From : Vs_2.Variable_String:
To : Vs_2.variable_string;
Subject : Vs_2.Variable_String;
Text : Vs_2.Variable_string:
end record;

function Mail _Message_From User
return Mail Message:/

end Mm_2;

Now, consider the programmer wha is trying 10 reuse the
above deciarations in the same program. A reasonable way (0
combine the use of Mail_Messages with the use of
Phone_Maessages might seem (o be as lollows:

with Vs_1;
with Pm_Ll;
with Mm_2:
procedure User is
Name Vs_l.vazi.ablc_sr.zinq:
Pm : Pm_l.Phone Message :=
Pm_l.Phone_Message_From User:
Mm : Mm _2.Mail Message :=
Mm_2 . Mail Message From_User:
begin
Name := Pm.To:
Mm.From := Name: -= ilegal
end User:

This will fait to compile, however, since the types Vs_1.
Variable_String and Vs_2.Variable_String are distinct and
Iherafore values of one are not assignable to objects of the
other (the value of Name is of type Vs_1.Variable_String and
the record component Mm._From is of type Vs_2.
Variable_String). -

In the above exampia, note that the vanable siring types
were left visible rather than made privale to make it seem
even more plausible for a programmaer 10 expect that, at least
logicaily, the assignment attempted is reasonable. However.

the incompatibility between the underlying type declarations
used by Mail_Messaga and Phone_Message becomes a problem.
One solution might be to use type conversion. Howaver.
employing typa conversion between elements of the low level
variable string types destroys the abstraction for the
higher-level units. For instance, the user procedure above
could ba written as shown below, but exposing the detail of the
implementation of the variable strings represents a poor, and
possibly dangerous, programming style.

with vs_1.
with Pm_1l:
with Mm 2:
procedure Type_Conversion User is
Name : Vs_l.Variable String:
Pm : Pm_l.Phone_Message :=
Pm_1l.Phone Message From User:
M o: Mn_2.Mail Message :=
Mu_2.Mail Message from User;
begin
Name := Pm.ToO:
Mn.From.Data (1..80) := Name.Data:
Mm.From.Length := Name.Length;
end Type_Conversion_User:

Notice that we had to be careful to avoid a constraint arror
at the point of the data assignment. This is one example of how
attempts to combine the use of resources which rely on
different context declarations is difficult in Ada.

Static type checking, therefore, is a mixed blessing. 1
prevents many errors from antering a software system which
might not otherwise be datected until run time. However, it
limits the possible reuse of a module it a specific daciaration
environment must aiso be reused. Not only must. the reuseo
moduie be in the scope of those declarations, but so must s
users. Further, those users are forced to communicate win
that module using the shared external types rather than their
own, making the resource master oves its users instead of the
othar way around. The sat of types which facilitates
commurnication among the components of a program, therefore.
ultimately prevenis most, if not all, of the developed
algonthms from being easily used in any other program.

This study refars to deciaratons such as those of the above
variable string types as contexts, and to components which
ouild upon those declarations and which are in twrn used by
other components, such as the above Mail_Message and
Phone_Message packages. as resources. Components which
depend on resources are referred to as users. The above
illustrates tha genaral case of a context-resource-user
relationship. It is possible for a component 10 be both a
resource al one level and aisc a context for a still higher-ievel
resource. The dependencies among these three basic categones
ot components can be illustrated with a directed graph. Figure
2 shows a graph of the king of dependency illustrated in the
axample above.

A resgurce does nat always need full lype intformation
about the data it must access in ordar 10 accompiish its task.
In the above axamples. it woukd be possible for the Mail and
Phone message rasources o impiement their functions via the
functions exported from the variable string packages without
any further information about tha structures of those lower
|evel variable string types. Sometimes, even less knowiedge

8th Annual National Conterence on Ada Technology 1980

6109

5-25

of the structure or functionality of the typas being
manipulated by a resource is required by that resource for it
to accomplish its function.

user
A
resource
i = A depends on B
B
context

Figure 2.

A common example of a situation where 3 resource needs
no struciural or operational information about the objects it
manipuiates is a simple data base which stores and retrieves
data but which dogs not take advantage of the information
contained by that data. it is possible to write or transform
such a resource so that the context it requires (1.e., the type of
the object to be stored and retrieved) is supplied by the users
of that resource. Then, only the essential work of the module
needs to remain. This “essence only” principle is the key !0
the transformations sought. Only the purpose of a module
remains, with any details needed to produce the executing code,
such as actuai type declarations or specific operations on those
lypes, being provided later by the users of the resource. In
languages such as Smalltalk which allow dynamic binding, this
information is bound at run time. o Ada, whers the compiler
is obligated to perform all type checking, generics are bound
ar compilation time, eiiminating a major source of run time
errors caused by attempting to perform inappropriate
oparations on an object. Even though they are statically
checked, however, Ada generics can often allow 2 resource 1o

be written so as to free it lrom depending upon external type
definitions.

Using the following arbitrary type deciaration and ’a
simplified data store package. one possibig lransformation is
illustrated. First the example is shown before any
ranstormation is applied:

-~ context:
package Decls is

type Typ is
end Decls;

-- anything but limited private

-- reasource:
wiath Decls;
package Store is
procedure Put (Obj : in Decls.Typ):
procedurs Get_Last {Obj : out Dfcls.Typ):
end Store;

package hbody Store is

Local : Decls.Typ:
procedure Put (Obj : in Decls.Typ) is
begin
Local := Obj;
end Put;
procedure Get_Last (Obj : out Decls.Typ) is
begin

Obj := Local:;
end Get_Last;
end Store:

The above resource can be transformed into the following
one which has no dependencies on external dectarations:

- genaeralized resource:
generic
type Typ is private:
package General Store is
procedure Put (Obj : in Typ):
procedure Get_Last (Obj : out Typ):
end General_Store;

package body General Store is
Local : Typ:s
procedure Put (Obj :
begin
Local := Ob3;
end Put;
procedure Get_Last (Obj
begin
Obj := Local:
end Get_Last;
end General Store:

in Typ) is

: out Typ) is

Note that, by naming the generic formal parameter
appropriately, none of the identifiers in the code needed to
change. and the expanded names were marely shortened o
their simpie names. This minimizes the handling required to
perform the transformation (although automating the process
wouid make this an unimportant issue). This transformation
required the remaval of the context clause, the addition of two
lines (the generic part) and the shortening of the expanded
names. The modification required to convert the package to a
theoretically independent one constitutes a reusability
measure. A user of the resource in the original form would
need 10 add the following deciaration in order to obtain an
appropriate instance of the resource:

package Store i3 new General_Store (Decls.Typ):

Formal rules for counting program changes have already
been proposed and validated (4], and adaptations of these
counting ruies (such as using a lower handling value for
shortening expandsd names and a higher one for adding genenc
formais) are being considered as part of this work.

The earller exampie with the variable string types can
also be generalized o remove the depandencies between the
mail and phone message packages (resourcas) and the variable
string packages (contexts). For axample, ignoring the
implementations (bodies) of the resources, the following
would functionally be equivalent 10 those examples:

8th Annual National Contference on Ada Technology 1990

5-26

6109

- Contexts, as before:
package Vs_1 is
type Variable_String is
record
paca : String (1..80):
Len : Natural;
end record;
function Variable_String From User
return Vlriabl._S:ginq;

end Vs_1;

package Vs_2 is
type Variable_String is
recorxd
Data : String (1..250) := (others=>' '};
Len : Natuzal := 0;
end record;
function Variable_String_ From User
return Variable_String:

end Vs_2;

- Resourcas, which no ionger depend upon
- the above context declarations:
geneczic
type Component i{s private;
package Gen_Pm 1 is
type Phone_Message is
record
From : Component;
To : Component;
Data : Component:;
end record;
function Phone_Message_From_User
return Phone Message:
end Gen_Pm_1;

generic

type Component is privace;
package Gen_Mm 2 is

type Mail_Message is

recozd
From : Component;
To : Component;

Subj : Component;
Text : Component.
end record;
function Mail_Message_From User
cecurn Mail_Message;
end Gen_Mm 2:

Now, the programmer who is trying lo reuse the above
declarations by combining the use of Mail_Messages with the
use of Phone_Maessages has another option. Instead of trying to
combine both contexts, just one can be chosen (in this case.
vs_2):

with Vs_2;
with Gen_Pm_l1:
with Gen_Mm _2:
procedure User is
package Pm_l is new
Gen_Pm_l (Va_2.Vaciable_sString):
package Mm_2 is new
Gen_Mm_2 (Vs_2.variable_String):
Name : Vs_2.vVariable_String:

Pm : Pm_l.Phone Message :@=
Pm_l.Phone_Message_From _User:
Mm : Mm_2 _Mail Measage :=
Mm_2.Mail_Message_from User:
begin
Name := Mm, From;
Pm.To := Name; -~ now OK
end User;

An additional complaxity is required for this example. The
resources must be able to obtain component type values from
which to construct mail and phone messages. Although this is
not obvious from the specifications only, it can be assumed
that such functionality must be available in the body. This can
be done by adding a generic formal function parameter to the
ganaric parts. requiring the user to supply an additional
parameter to the instantiations as well:

generic
type Component is private;
with function Component_from User
return Component.
- parameteriass for simplicity
package Gen_Pm_l is
type Phone_Message is

reacord
from : Component:
To : Component;

Data : Component:
end record:
function Phone_Message_From User
. return Phone_Message:
end Gen_Pm_l;

Although the above examples show the context, the
resource, and the user as library fevel units, declaration
dapendence can occur, and Iransformations can be applied, in
situations where the three components are nested. For
example, the resource and user can be co-resident n a
deciarativa area, or the user can contain the resource or vice
versa.

This reiterates the earlier claim that, at least for the
purpose of this modei, il does not matter if the data is
encapsulated with its applicable function, it just makes it
easier 1o find if it is. In the programs studied. the lowest level
data types. which were often properly encapsulated with their
immaediately available operations, were used to construct
higher level resources specific to the problem being soived. It
was uynusual for those resources !0 be written with the same
level of encapsuiation and independence as the lower level
types, and this resuited in the kind of context-resource-user
dependencies illustrated above.

For example, in the case of the generalized simple data
base, the functionality of the data appears in the resource
while the declaration of it appears in the context. The only
pltace where the higher-level object comes into exisience is
inside the user component, at the point where Ihe instantiation
is declared. If desired. an aadditional transformation can be
applied to rectify (his problem of the apparent separation of
the object from ils operations. Instead of leaving the
instantiation of the naw genernc rasource up lo the client

8th Annual National Conference on Ada Technology 1990

6109

5-27

software, an intermediate package can be created which
combines the visibility of the context deciarations with
instantiations of the generic resource. This package, then,
becomes the direct resource for the client software,
introducing a layer of abstraction that was nol presant in the
original (non-general) structure.

For example, the following transformation o the second
exampie above combines the resource General_Slore with the
context of choice, type Typ from package Decis. The
deciaration of the packags Object performs this service.

generic
type Typ is private:
package General_ Store is
procedure Put (Obj : in Typ):
procedure Get_Last (Obj : out Typ);
end General_Store:

package Decls is
type Typ i3 ...
and Decls:

with Decls;
with General_Store;
package Qbject is
subtype Typ is Decls.Typ:;
package Store is new General_Store (Typ):
procedure Put (Obj : in Typ)
cenames Store.Put;
procedure Get_Last (Obj : ocut Typ)
cenamas Store.Get_Last;
end Object;

with Object;
procedure Client is
Item : Object.Typ:
begin
Object.Put (Item);
Object.Geg_Last (Item);
end Client:

Note that no body for package Object is required using the
style shown. If it ware preferable to leave the implementation
of Object flexible, so that users would not need 0 be
recompiled if the context used by the instantiation were to
changa, the context clauses and the instantiation could be made
to appear only in the body of Object. An aitemate, admittedly
more complex, axample is shown here which accomplishes
this flexibility:

package Object is

cype Typ is private:

function Initial return Typ:

procedure Put (Obj : in Typ!:

procedure Get Last (0bj : in Typ):
privace

cype Designaced:

type TYp i3 access Designated:;
end Object;

wich Decls;
with General_Store:
package body Object is

type Typ is new Decls.Typ:
function Initial return Typ is
begin
return new Designated;
end Initial;
package Store is new General Store (Typ):

procedure Put (ORj : in Typ) is
begin

Store.Put (Obj.all):
end Put;
procedure Get_Last (Obj : in Typ) is
begin

Store.Get_Last (Obj.all):
end Get Last:
end Object:

in the alternate exampie, note that the paramater mode for
the Get_Last procedure needed {0 be changed lo allow the
reading of the designated object of the actual accass parameter.
Alsa, a simpie initialization function was supplied to provide
the client with a way of passing a non-nuil access object 10 the
Put and Get_Last proceduras. Nomnaily, there wouild already
be initlalization and constructor operations, so this additional
operation would not be needed. The advantage of this
alternative is that the implementation of the type and
operations can change without disturbing the client softwara.
However, the first alternative could be changed in a
compilation-compatible way. such that any client software
wouid need recompilation but no modification.

It is aiso possible to provide just an, instantiation as a
library unit by itseit, but this requires the user 1o acquire
independently the visibility to the same context as that
instantiation. This solution resuits in the reconstruction of
the original situation, where the instantiation becomes the
resource dependent on a contaxt, and the user depends on both.
The important difference, however, is that now the resourcs
({the instantiation) is not viewed as a reusabie component. it
becomes application-specific and can be routinely (potentiatly
automaticaily) generated from both the genaralized reusable
resource and the context of choice, while the generic from
which the instantiation is producaed remains the independent,
reusable componsent. The advantage of this structure lies in
the abstraction provided for the user componant which is
insuiated from the complexities of the instantiation of the
reusable generic. Since the result is similar 1o the initial
architecture, the overall software architecture can be

preserved while utilizing generic resources. The following
illustrates this.
packaqge Decls is
type Typ is ...
end Decls:
generic
type Typ is private;
package General_ _Store is
procedure Puc (Obj : in Typ):
procedure Get_Last (Obj : out Typl:

end General Store;

with Decls:;
vich General_Store;
package Object is new General Store{Decls.Typ);

8th Annual National Conference on Ada Technology 1990

5-28

6109

with Decls:
with Object:
procedure Client is
Item : Decls.Typ:
begin
Object.Put (Iltem);
Object.Get_Last (Item):
aend Client:

By modifying the generic rasource o “pass through® the
generic formal types, tha user's reilance on the context can be
raemoved:

generic
type Gen_Typ is private:
package General Store is
subtype Typ is Gen_Typ: - pass the type through
procedure Put (Obj : in Typ);
procedure Get_Last (Obj : out Typ):
end General _Store:;

package Dacls is
type Typ is ...
end Decls;

wich Decls;
with General Store;
package Object is new Gene:al_sr.o:é (Decls.Typ):

with Object;
procedure Client is
Iteam : Object.Typ;
begin
Object.Put (Item);
Object .Get_Last (Item);
end Client;

Measurement

In the above exampies, the contaxt componants were never
modified. Rasource components were modified to eliminate
their dependence on context components. User components
were modified in order to maintain their functionality given
the now general resource components, typically by defining
generic actual parameter objects and adding an instantiation.
in the case of the encapsulated instantiations. an intermediate
component was introduced to free the usar component ot the
complexity of the instantiation. it is the ease or difficulty of
moditying the resource components that is of primary interast
here. and lhe measurement of this modification effort
constitutes a measuremant of the resusability of the
components. The usability of the generalized resources is also

. of interest, since some may be difficuit 1o instantiate.

Considering the above exampies again, the simpie data base
resource Store required the removal of the context clause and
the creation of a genaric part (these baing typical
modifications for almost ali transformations of this king). In
addition, the formal parameter types for the two subprograms
were changed to the generic formal private type, causing a
change to boih the subprogram specification and body. No
further changes were required.

.- original:
with Decls:
package Store is
procedure fut (Obj : in Dacls.Typ):
procedure Get_Last (Obj : out Decls.Typ):
end Store;

package body Store is
Local : Decls.lyp:
procedure Put (Obj : in Decls.Typ) is

begin
Local := Obj:
and Put;
procedurs Gat_Last (0bj : out Decls.Typ) is
begin

Obj := Local;
end Get_Last;
and Store:

- transformed:
gensric

type Typ is private: - change
package General _Store is

procedure Put (Obj : in Typ): - change

procedure Gec_Last (Obj: out Typ): - change
end Genezal_sStore:
package body General_Store is

Local : Typ:

procedure Put (Obj : in Typ) is - change

begin

Local := Obj;

end Put;

procedure Get_Last (Obj: out Typ) is - change

begin

obj := Local;
end Get_lasc;
end General_Store:

The Phone_Message and Mail_Message resources required
the deletion of the context clausae, the addition of a generic part
consisting of a formal private lype parameter and a formai
subprogram parameater, and the replacement of three
accurrences (or four, in the case of Mail_Message) of the type
mark Vs_1.Variable_String with the generic formal type
Component.

-~ original:
with Vs_1;
package Pfm_l is
type Phone_Message is

record
From : Vs_l.Variable_String;
To : Vs_l.varisble_string;

Daca : Vs_l.variable_String;
end cecord:;
function Phone_Message_From User
return Phone_Message;
end Pm_1:

-- lransformed:
generic
type Component i3 private: -- change
with function Component from User
return Component: -- change

8th Annual Natonal Conferance on Ada Technoiogy 1990

6109

5-29

ORIGINAL pag
Els

OF POOR QuALITY

package Gen_Pm_1 is
cype Phone_Message ia

record
From : Component: -~ change
To : Component; -~ change
Data : Component; -~ change
end record:

function Phone_Message_Ffrom_User
return Phone_Massage:
end Gen_Pm_1:

Generalizing the bodies of Gen_Pm_1 and Gen_Mm_2
would involve replacing any calls to the Variable_String_
From_User functions with cails to the generic formai
Component_From_User function. In the case of the simpie
bodies shown before, this wouid require three and four simple
substitutions, for Gen_Pm_1 and Gen_Mm_2, raspectively.

In addition to measuring the reusability of a unit by the
amount of transformation required 10 maximize its
independance, reusability can aiso be gauged by the amount of
residual dependency on othar units which cannot be
eliminated, or which is unreasonably difficuit to eiiminate, by
any of the propossd transformations. For any given unit,
therefors, two values can be obtained. The first reveais the
number of program changes which would be required to
perform any appiicable transformations. The second indicates
the amount of dependence which would remain in the unit even
after it was lransformed. The original unils in the exampies
above would score high on the first scale since the handiing
required for its conversion was negligibie, implying that its
reusability was already good (Le., it was akeady independent
or was easy |0 make independent of extemal deciarations).
Alter the transformation, there remain no latent dependencies,
so the transformed genenc would receive a perfect reusability
score.

Note that the object of any reusability measurement, and
iherefore, of any transformations, need nol be a single Ada
unit. It 3 set of library units were intended 1o be reused
together then the metrics as well as ihe transtormations could
be applied to the entira set. Whereas there might be
substantial interdependence among the units within the set, it
stil might be possibie to aliminate all dependencies on
axternal declarations. .

In the above examplas, one reason that the transformation
was lrivial was that the only operation performed on objects
of the external type was assignment (except for the mail and
phone message exampies). Therefore, it was possibie to
replace direct visibility 10 the externai type definition with a
genaeric lormal private typs. A second axample illusirates a
slightty more difficuil transformation which includes more
assumptions about the externaily deciared lype. In the
following exampie, indexing and component assignment are
used by the resource.

Belore transformation:

-- contaxt
package Arr is
type [tem_Array ia
array (Integer range <>) of Nacural:
end Arrc:

-~ resource
with Arr;
procedurs Clear (Item :
begin
for I in Item'Range loop
Item (I} := 0;
end loop;
end Clear:

out Arr.Item_ Array) is

- user
with Arrz, Clear:;
procedure Client ls
X : Arr.Item Array (1..10):
begin
Clear (X):
end Client;

After transformation:

-- context (same)
package Arr is
type Item Array is
array (Integer range <>) of Natural:
end Arc;

- generaiized resource
generic

type Component i3 range <>:

cype Index is rcange <>;

type Gen_Array is

arzay {(Index ranges <>} of Component:

procedure Gen_Clear (Item : out Gen_Array);
procedure Gen_Clear (Item : out Gen_Array} is

begin
for I in Item’Range loop
Item (I} := O0;
end loop:

end Gen_Clear:

- user

with Arr, Gen_Clear:

procedure Client is
X : Arr.Item Array (1..10):
procedure Clear is new Gen_Clear

(Nactural,
Integer,
Azr.Item_ Acray);
begin
Cleaz (X):

end Client:

The above transformation ramoves compilation dependen-
cies, and allows the generic procedure to describe its essential
function without the visibility of extemal declarations. As
before, an intermediate object couid be created to free the user
procedure from the chore of instantiating a Clear procedura,
which requires visibility to both the context and the resourcae.
Howaver, it aiso illustrates an important additional kind of
dependence which can exist between a resource and its users,
namely information dependence.

In the pravious example, the literal vaiue 0 is a clua fo the
presence of information that is not general. Therefore, the
following would be an improvement over lhe transformation
shown above:

8th Annual National Conference on Ada Technology 1990

Tt S
Loy R E

5-30

"
o

TS Ja 3 T

=7d

6109

generic

type Component is range <>;

type Index is range <>;

cype Gen_Array is

array (Index cange <>) of Componant:

Init_Val : Comp t = C 'Firat;
procedurs Gen_Clear (Item : out Gen_Array):
procedure Gen_Clear (Item : out Gen_Array) is
begin

for I in Item‘Range loop

Item (I) := Init_val;

end loop:;

end Gen_Clear:

Note that the last transformation allows the user to supply
an initial value, but aiso provides lhe lowest value of the
componant type as a dafault. An additional refinement would be
to make the-component type private which would mean that
Init_Val couid not have a default vaiue. Information
dependencies such as the one illustrated hers are harder to
detect than compilation dependencies. The appearance of
literal values in a resource is often an indication of an
information dependences.

A third form of depsndencs, called protocol dependence, has
aiso been identified. This occurs when the user of a resource
must obey certain ruies to ensure that the resource behaves
property. For example, a stack which is used to buffer
information between other users couid be implemented in a
- not-so-abstract fashion by exposing the stack array and top
pointer directly. In this case, all users of the stack must
follow the same protocol of decrementing the pointer before
popping and incrementing after pushing, and not the other way
around. Beyond the racognition of it, no additional treatment
of this form of dependence betwaen companents will appear in
this study.

Formalizi I

The following is a formalization of the objectives of
transformations which are needed to ramove declaration

dependence.
1. Let P represent a program unit.

2. Lat D represent the set of n object dectarations. dy .. G,
directly referenced by P such that d; is of a type declared
axternaily to P.

3. Let Oy . On be sets of operations where G is the set of
operations applied to & inside P.

4. P is completaly transformable it each operation in each of
the sets, Oy .. On Can be replaced with a predefined or genenc
formal operation.

The earlier example lransformalion is reviewed in the
context of these definitions:

1. Let P represant a program unit.
P = procedure Clear (item : out Arr.ltem_Array) is ..

2. Lat D represent the set of n object declarations, dy .. dn,
directly referenced by P such that dy is of a type declared

externaily to P.
D= [Amitem_Array |

3. L8t Oy .. On be sets of operations where O; is the set of
operations applied 1o & inside P.

O =
{ indexing by integers, integer assignment to components }

4. P is completely transtormable if each operation in each of
the sats, Oy .. 04 can be replaced with a predefined or genenc
formal operation.

Indexing can be cbtained through a generic formal array
type. Although no constraining operation was used, the formai
typa could be either constrained or unconstrained since the
only deciared object is a formal subprogram parameter.
Since component assignment is required, the component type
must not be limited. Therefore, the following generic forma
parts are possible: .

type Component is range <>;
type Index is range <>;

followed by aither:

type Gen_Array is array (Index) of Component:
or:

type Gen_Array is
array (Index range <>) of Component:

Notice that some operations can ba replaced with generic
formal operations more easily than others. For axample,
direct access of aray structures can generally be raplaced by
making the array type a generic formal type. However, direct
access into record structuras (using “do{” notation)
complicates transformations since this operation must be
replaced with a user-defined access function.

Aplicaii e s
Medium-Sized Proi

To test the leasibility of the transformations proposed, a
§,000-line Ada program written by seven professional
programmers was examined for reause transformation
possibilities. The program consisted of six library units,
ranging in size from 20 to 2,400 lines. Of the 30
theoretically possible dependencies that couid exist among
these units, ten were required. Four transformations of the
sort described above were made lo three of the unils. These
required an additional 44 lines of code (less than a 1%
increase) and reducad the number of depandencies from ten to
five, which is the minimum possible with six units. Using one
possible program change dafinition, each transtormation
required between two and Six changes.

8th Annual Nationat Conference an Ada Technoiogy 1990

Crisinic bRGE 1§

6109 OF POom ovipy prry

5

-31

A fifth modification was madae o detach a nested unit from
its parent. This required the addition of 15 lines and resulted
in a total of seven units with the minimum six dependencies.
Next, two other functions wers made independent of the other
units. Uniike the previous transformations which were
targeted for later reuss, however, these transformations
resulted in a net reduction in code since tha resulting
components were reused at muitipie points within this
program. Substantial information dependency which would
have impaired actual rause was identified but remained within
the units, however.

A second madium-sized project was studied which
exhibited such a high degree of mutual dependence between
pairs of library units that, instead of selecting smaller units
for generalizations, the question of non-hierarchical
dependence was studied at a system level. The general
conclusion from this was that loops in the dependency
structure (where, for axample, package A is referenced from
package body 8 and package B is referenced from package body
A) make generaiization of thosa components difficult. The
program was instead analyzed for possibie restructuring to
remove as much of the bi-directional dependence as practical.
This was partially successful and suggests that this sort of
redesign might appropriately preceds other reuse analyses.
Iha NASA Proiects

Currantly, the research project is examining several
spacecraft flight simulation programs from the NASA Goddard
Space Flight Center. These programs are esch more than
100,000 editor lines of Ada. They have been deveioped by an
organization that originally deveioped such simulators in
Fortran and has been transitioning 10 the usa of Ada over the
past several yeass. Becausa all the programs are in the same
application domain and were developed by the same
organization thers is consiierable opportunity for reuse. In
ihe past, the development organization reported the ability to
reuse® about 20% of eariier programs when a new program
was baing deveioped in Fortran. However, since becoming
tamiliar with Ada, the same organization is now raporting a
70% reuse rate, or better.

After gaining an understanding of the nature of the reuse .

accomplished in Fortran and. later in Ada, and how similar or
different reusa in the two languages was, we would like to test
several theories about why the Ada reuse has been so much
greater. Wa aiready know that (he reuse is accomplished by
modifying eartier components as required, and nat, in general,
by using existing software verbatim. Because of this reuse
mode. one iheory we wii be testing is that the Ada programs
are more reusable simply because they are more
understandabile.

For the cument study, the programs wera studied to
reveal opportunities to axiract generic componenis which, had
they been available when the programs were being developed
originaily, could have been reused without modification.
There is an additional advantage lo working with this data.
however, since, as mentioned above, the several programs
already exhibit significant functional similarities which can
be studied for possible generalization. In other words,
whareas the initial discussion of generic exiraction has

focussed on attempts to completely free the essantial function
of a component from its static declaration context, this data
gives examples of similar components in two or more different
program contexts and therefora allows us to study the
possibility of freeing a component from only its program-
specific context and not from any context which remains
constant across programs.

This gives rise to the notion of domain-spacific generic
extraction as opposed to domain-independent genaric
extraction. Given the problems associated with extracting a
complately general component, as examined earlier, 3 case can
be made to generalize away only some of the dependence,
leaving the rest in piace. The additional problem, then,
becomes how to determine what dependence is permissible and
what shouid be removed. The permissibie dependence wouid be
common across projects in a certain domain, and would
therefore be domain-specific while the dependence o be
removed wouid be the problem-specific context. When
reused, then, these components would have their problem-
spacific context supplied as generic actual parameters.

This is currently a largely manual task, since the
programs must be compared to find corresponding
functionality and then examined to determine the intersection
of that functionality. Interestingly, on the last project the
developers themseives have aiso been devising generic
components which are instantiated only one time within that
program. This impiled 10 us that some effort was baing spent
1o make components which might be reusable with no, or
perhaps only very little, modification in the next project. We
have confirmed with the developers that this is in fact the casa.
By comparing the results of our generaiizations with those
done by the developers, we find that ours have much more
compiex generic parts but correspondingly much less
dependence on other software. This is a reasonabie result.
since the developers already have some idea about the context
for each reuse of a given generic; what aspects of that context
are lkely to changs from project to project and what aspects
are expected 0 remain constant across several programs. The
program-specific context, only, appears in the generic parts
of the generics written Dy the developers, while our
generalizations have generic parts which contain deciarations
of types and operations which apparently do not need to change
as long as the probiem domain remains the same. In other
words, when our generic parts are devised by analyzing only a
singla instance of a component, we cannot distinguish between
program-spaecific and domain-specific generalizations.

One intaresting question we wouid like to answer is

whether we can derive the generic part that makes the most
sense within this domain by comparing similar components
from different programs and generalizing only on their
differences, leaving the software in the intersection of the
components unchanged. In this way, a componant would be
darived which wouid not be completely independent but, like
Fhe developer-writtan generics, wouid be sufficiently
independent for reuse in the domain. Then, a comparison with
the generics developed within the or¢anization would be
reveaiing. It the generics are similar then our procass might
be usaful on other parts of the software that have not yet been
generalized by the developers. Howaever, if they diller
greatly, it would be usaful to characterize that difference and

8th Annual National Conterence on Ada Technology 1990

ORIGINAL PAGE is

6109 OF POOR QUALITY

undarstand what additional knowledge must be used in
generalizing the repeated software. Unfortunately, there is
not enough reuse of the deveioper's generics yet 10 make this
final comparison but a project is currently in progress which
shouid supply soma of this data.

The following exampie illustrates the complexity of the
generic parts which were required to compietely isolate a
typical unit from its context. Hers, the procedure
Check_Header was removed from a package body and
generalized to be able to stand alone as a library lavel generic
procadure.

ganeric

type Time is private:
type Duration is digits <>:
with function Enable return Boolean:
type Hd_Rec_Type is private:;
with procedure Set_Start

(H : in out Hd_Rec_Type: To :
with function Get_Start

(H : Hd_Rec_Type) return Duration:
with procedure Set_Stop

(H : in out Hd_Rec_Type:; To :
with function Get_Stop

(H : Hd_Rec_Type) return Duration:
type Real is digits <>;
with function Get_Att_Int

(H : HA_Rec_Type) return Real;
with function Conv_Time

(D_float : Duration) return Duration;
Header_Rec : in out Hd_Rec_Type:
Goesim Time Step : in out Duration;
with function Seconds_Since_1357

(T : in Time) retuzrn Duration;
with procedure Debug_Write (Output :
with procedurs Debug_£nd_Line:
type Direct_File_Type is limicted privace:
with procedure Direct_Read

{File : Direct_File_Type):
with procedure Direct Get

(File : in Direct_file_Type:

Item : out Hd_Rec_Type);
with function Image_Of_ Base_ 10

(Item : Duration) return String:
with procedure Header_Daca_Error;

procedure Check_Header_Generic

(Simulation_Start_Time : in Time:
Simulation_Stop_Time in Time:
Simulation Time _Step in Duration:
History File : in out Direct_File Type):

Duration):

Duration);

String)

The instantiation of this generic part is correspondingly
complex:

procedure Check_Header_Instance i3 new
Check_Header_Generic

(Abstract_Calendar.Time,
Abstract_Calendar.Duration,
Debug_Enable,
Attitude_History_Types.Header Recocd,
Set_Starc,

Get _Stare,

Set_5top,

Get_S5top,

Utilities.Read,

Get _Att_Hist Out_lat,

Converted Time,
Hisctory_Data.Header_Rec,
History_Data.Goesim Time _Step.
Timer.Seconds_Since_1957.
Error_Collector.Write,
Error_Collector.End_Line,
Direct_Mixed_Io.File_Type,
Direct_Mixed_Io.Read,
Gac_From_Buffer,
Image_Of_Base_10,
Raise_feader_Data_Error);

In contrast, a typical generic part on a unit which was
developed and dellvered as part of the mast recent compieted
project by the developers themseives is shown here:

with Css_Typea;
generic
Number_Of_Seansors : Natural :=
Css_Types.Number Of Sensors;
with function Initialize_Sensor
return Css_Types.Css_Database_Type is <>
package Generic_Coarse_Sun_Sensor is

Note that by allowing the visibility of Css_Types, the
generic part was simplified. Baing unfamiliar with the
domain, had we attempted to generalize Coarsa_Sun_Sensor by
examining only the non-generic varsion of a corresponding
component in another program we wouid not be able to tell
whather the dependence on Css_Types was program-specific
or domain-specific. Hers, however, the deveioper lgads us to
peliave that Css_Types is domain-specific while the number
of sensors and sensor initialization is program specific.

Guidali

The manual application of the pnnciples and techniques ot
genaeric lransformation and axtraction has revealed several
interesting and intuitively reasonable guidelines relative to
the creation and reuse of Ada software. In genaral, these
guidelings appear to be applicable to programs of any size.
However, the last guideline in the list, concerning program
structure, was the most obvious when dealing with medium to
large programs.

. Avoid direct access into record components except in the
same daclarative region as the racord type deciaration.

Since there is no generic lormal recard type in Ada
(without dynamic binding such a feature would be
impractical) there is no straightforward way to replace
recard component access with a generic operation. instead.
user-supplied access functions are neaded 10 access the
components and the lype must be passed as a private type.
This is uniike array types for which there are two genernc
formal types (constrained and unconstrained). This supports
the findings of others which assert that direct reterencing of
non-local record componants adversely affects maintainability
(61.

- Minimize non-local access to array components.

Although not as difficuit in general as removing dependence

ath Annual National Conference on Ada Technology 1980

6109

L

firr ,"

b LI

5-33

on a record type, removing dependence on an asray type can be
cumbersome.

- Keep direct access lo data structures local to their
declarations.

This is a stronger conclusion than the previous two, and
reinforces the philosophy of using abstract data types in all
situations where a data type is availabie outside its local
declarative region. Encapsulated lypes are far easier 1o
separate as resources than giobally deciared types since the
operations are lacalized and contained.

« Avoid the use of literal values except as constant value
assignments.

Information dependence is aimost always associated with
the use of a literal value in one unit of software that has some
hidden relationship to a literal valus in a different unit. If a
unit is generalized and extracted for reuse but contains 2a
literal vaiue which indicates a dependence on some assumption
about ils original context, that unit can fail in unpredictable
ways when reused. Conventional wisdom applies here, and it
might be reasonable to reiax the rastriction (o allow the use of
0 and 1. However, experience with a considerable amount of

index of any string is 1 has shown that even this can lead to
problems.

- Avoid mingling resources with appiication specific conyens.

. Although the purpose of the transformations is to separate
resources from application specific software regardiess of the
program structure, certain styles of programming result in
programs which can be transformed more easily and
completely. By staying conscious of the ultimate goal of
separating reusable function from appiication declarations,
whaether or not the functionglity is initially programmed to be
generic, programmers can simplify the aventual
transformation of the coda.

- Keep interfaces abstract

Protocol dependencies arise from the exportation of
implementation details that should not be present in the
interface to a resourcs. Such an interface is vuinerable
because it assumes a usage protocol which does not have 10 be
foliowed by its users. The bad stack exampie illustrates what
can happen when a resource interface requires the use of
implementation details, however even resources with an
appropriately abstract interface can export unwanted
additionad detail which can lead to protocol dependencs.

- Avoid direct raference to package Standard.Float

Even when used o define other floating point types. direct
raference lo Floal aestabiishes an implementation dependence
that does not occur with anonymous floating paint deciarations.
Especially dangerous is a direct relerence 10
Standard.Long_Float, Standard.Long_Integer, eic.. since thay
may not even compile on different impiementations. Some
cara must aiso be taken with Integer, Pasitive, and Natural,

though in general they were not associated with as much
dependence as Floal. Note that fixed point types in Ada are
constructed as needed by the compiler. Perhaps the same
philosophy shouid have been adopted for Float and Integer.
Refersnce to Character and Boolean is not a problem since they
are the same on all implementations.

* Avoid the use of ‘Address

Even though it is not necessary to be in the scope of
package System to usae this attribute, il sets up a dapendency
on System.Address that makes the software non-portable. If
this attribute is needed for some low-iavel programming than
it should be encapsulated and never be exposed in the interfacs
to that level.

« Consider the inter-component dependenca of a design

By understanding how lunctionaily-equivalent programs
can vary in their degree of Inter-componsnt depsndence,
designers and developers can make decisions about how much
dependencs will be permitted in an evolving system, and how
much effort will bs applied to limit that dependenca. For
system developments which are expected !0 yield reusable
componants directly, 2 decision can be made o0 minimize
dependenciaes from the outsat. For davelopmaents which asre not
able to make such an investment in reusabdity, a decision can
be made o allow certain kinds of dependencies to occur. In
particular, dependencies which are removable through
subsequent transformation might be allowed while those that
would be too difficuit to remove later might be avoided. A
particularly cumbersome type of dependence occurs when two
library units raference each other, aither directly or
indirectly. This shouid be avoided if at all possible. By
making structural decisions explicitly, surprisas can be
avoided which might otherwise rasult in unwanted limitations
of the developed software.

Acknowjedgements

This work was supported in part by the U.S. Army
institute for Research in Management Information and
Computer Scienca under grant AIRMICS-01-4-33267, and
NASA under grant NSG-5123. Some of the software analysis
was performed using a Rational computer at Rational's eastern
regional office ih Caiverton, Maryiand.

Baterences

1. Basili, V. R. and Rombach, H. D. Software Reuse: A
Framework. n preparation.

2. Basili, V. R. and Rombach, H. D. The TAME Project:
Towards Improvement- Qriented Software Environmants.

LEEE Transactions on Software Engineering, SE-14. June
1988.

2 Funk & Wagnalls, Slandard College Dictionary, New York,
1977.

4. Myers, G. Composite/Structured Design, Van Nostrand
Reinhoild, New York, 1978.

8th Annuai National Conference on Ada Technology 1990

5-34

6109

5. Dunsmore, H.E. and Gannon, J.D. Experimentai
Investigation of Programming Complexity. in Proceedings
ACM/NBS 16th Annual Tech. Symposium: Svstems and

Saftware, Washington D.C., June 1877.

6. Gannon, J.D., Katz, E. and Basili, V.R. Characterizing Ada
Programs: Packages. In Procesdings Workshop on Software
Parformanca, Los Alamos National Laboratory, Los Alamos,
New Mexico, August 1983.

John W. Bailey is a Ph.D. candidate at the University of
Maryland Computer Science Oepartment. He is a part-time
employes of Rational and has been consulting and teaching in
the areas of Ada and software measurement for seven years. In
addition to Ada and software reuse, his intarests include
music, photography, motorcycling and horse support. Bailey
recaived his M.S. in computer scienca from the University of
Maryland, where he aiso eamed bachelor's and master's
degrees in calio performance. He is a membaer of the ACM.

Victor R. Basili is a professor at the University of Maryiand,
College Park's institute for Advanced Computer Studies and
Computer Science Department. His rasearch interasts include
measuring and evaluating software development. He is a
founder and principal of the Software Engineering Laboratory,
which is a joint venture amang NASA, the University of
Maryland and Computer Sciences Corporation. Basili receved
nis B.S. in mathematics from Fordham College, an M.S. in
mathematics from Syracuse University and a Ph.D. in
computer science from the university of Texas at Austin. He is
a fellow of the the IEEE Computer Society and is editor-in-
chief of j N

ORIGINAL PA
GE |
OF POOR QUAer$

8th Annual Nationai Conterence on Ada Technology 1990

5-35
6109

TANDARD BIBL F_SEL TERA'

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Pr in From the Fir mmer ftware Engi-
neering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software En-

gineering Workshop, September 1977

SEL-77-004, A Demonstration AXES for NAVPAK, M. Hamilton
and S. Zeldin, September 1977

SEL-77-005, FC NAVPAK Design Specifi
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP)

User's Guide (Revision 3), W. J. Decker and W. A. Taylor,
July 1986

SEL-79-002, The Software Engineering Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System

Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Cain Farbher nd Gordon Pro-
gram Design Language (PDL) in the Goddard Space Flight Center
(GSFC) Code 580 Software Design Environment, C. E. Goorevich,
A. L. Green, and W. J. Decker, September 1979

B-1
6109

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-002, MMLL&_QLE__E_QS_MQQSAQ__LLQME_

Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Mgmmmn_MszdLlangggz_aj_t_G_m_mp_o_t

W - he-Ar m r

Compatibility s;ugx, T. Welden, M. McClellan, and
P. Liebertz, May 1980

SEL-80-005, A _Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Pr in From the Fifth Ann ftware Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation
Models for Software Systems, J. F. Cook and F. E. McGarry,
December 1980

SEL-80-008, Tutorial on Models and Metrics for Software

and Engineering, V. R. Basili, 1980

SEL-81-008, nd Reli ili i ion M 1 CAREM
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, mew

bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981
SEL-81-011, Eval ing Software Developmen Analysis of
Change Data, D. M. Weiss, November 1981
SEL-81-012, The R igh v Model r Effor

ion Over th i Medium al ftwar ms,

G. 0. Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering Data

in th ftware Engineering L r r EL), A. L. Green,
W. J. Decker, and F. E. McGarry, September 1981
SEL-81-101, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

B-2
6109

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodology for Flight Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measur f Softwar
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program
(SAP) System Description (Revigion 1), W. A. Taylor and

W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-906, Annotated Bibliography of Software Engineering
Laboratory Literature, P. Groves and J. Valett, November 1990

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL~83-002, Measur nd Metri for ftware Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Vol-
ume II, November 1983

SEL-83-006, Monitorin ftware Development Through Dynami
Variables, C. W. Doerflinger, November 1983

SEL-83-106, Monitorin ftware Development Through Dynamic

Variables (Revision 1), C. W. Doerflinger, November 1989

B-3
6109

SEL-83-007, Proceedings From the Eighth Annual Software En-
gineering Workshop, November 1983

SEL-84-101, Manager's Handbook for Software Development,
Revision 1, L. Landis, F. McGarry, S. Waligora, et al.,

November 1990

SEL-84-003, Investigation of Specification Measures for the
re Engi i , W. W. Agresti,

V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedin he Ninth Annual ware Enqgi-
neering Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Techniques,
D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al., April

1985

SEL-85-002, Ada Training Evaluation and Recommendations From

the Gamma Ray Observatory Ada Development Team, R. Murphy
and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Vol-
ume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testindg,
CLEANROOM, and Metrics., R. W. Selby, Jr., May 1985

SEL-85-005, ftware Verifi ion and T ing, D. N. Card,
C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedings From the Tenth Annual Software Engi-
neering Workshop, December 1985

SEL-86-001, Programmer's Han r Flight Dynami

ware Development, R. Wood and E. Edwards, March 1986
SEL-86-002, neral ject-Oriente ftware Developmen

E. Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development En-
vironment Tutorial, J. Buell and P. Myers, July 1986
SEL-86-004, Collected Software Engineering Papers: Vol-

ume IV, November 1986

SEL-86~-005, Measuring Software Design, D. N. Card, October
1986

SEL-86-006, Proceedings From the Eleventh Annual Software
Engineering Workshop, December 1986

B-4
6109

SEL-87-001, Pr Poli nd Pr I

Flight Dynamics §gf§warg Development, S. Perry et al., March
1987

SEL-87-002, Ada Style Guide (Version 1.1), E. Seidewitz
et al., May 1987

SEL-87-003, lin for A h mposi ifica-
tion Model (QSM), W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada Design Process and Its Impli-
ions: A Case Study, S. Godfrey, C. Brophy, et al.,
July 1987

SEL-87-008, Data Collection Procedures for the Rehosted SEL
Database, G. Heller, October 1987

SEL-87-009, Collected Software Engineering Papers: Volume V,
S. DeLong, November 1987

SEL-87-010, Proceedings From the Twelfth Annual Software En-
gineering Workshop, December 1987

SEL-88-001, System Testing of a Production Ada Project: The
GRODY Study, J. Seigle, L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Vol-
ume VI, November 1988

SEL-88-003, Evolution of Ada Technol i he Flight Dynam-

ics Area; Design Phase Analysis, K. Quimby and L. Esker,
December 1988

SEL-88-004, Pr in £ Thi nth Annual ftwar
Engineering Workshop, November 1988

SEL-88-005, Pr din f Fir NASA Ada User' -
sium, December 1988

SEL-89-002, Implementation Pr ion Ada Pr
GRODY_Study, S. Godfrey and C. Brophy, September 1989
SEL-89-003, ftware Man ment Environmen SME ncepts
and Architecture, W. Decker and J. Valett, August 1989
SEL-89-004, Evolution of Ada Technology in the Flight Dy-
namics Area:; Implementation/Testing Phase Analysis,

K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry,
November 1989

6109

SEL-89-005,
FORTRAN at NASA/Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Vol-
ume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software
Engineering Workshop, November 1989

SEL-89-008, Proceedings of th nd NASA Ada Users' S -
sium, November 1989

SEL-89-101, ftware Engineering Laborator EL) Database

Organization and User's Guide (Revision 1), M. So, G. Heller,

S. Steinberg, K. Pumphrey, and D. Spiegel, February 1990

SEL-90-001, Database Access Manager for the Software Engi-

neering Laboratory (DAMSEL) User's Guide, M. Buhler and
K. Pumphrey, March 1950

SEL-90-002, The Cleanroom Case Study in the Software Engi-

ring L T rv: Proj Description and Early Anal
S. Green et al., March 1990

SEL-90-003, A £ th r ili f an Ada System in
ftware Engineering Labor r SEL), L. O. Jun and
S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada
ROD

rimen ummary, T. McDermott and M. Stark,
September 1990

SEL-90-005, Collected Software Engineering Papers: Vol-
ume VIII, November 1990

SEL-RELATED LITERATURE

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"

Pr in f the Fir International ium on Ada for
the NASA Space Station, June 1986

2pgresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Program Transformation and Pro-
gramming Environments. New York: Springer-Verlag, 1984

lBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the

Fifth International Conference on Software Engineering.
New York: IEEE Computer Society Press, 1981

B-6
6109

8Bailey, J. W., and V. R. Basili, "Software Reclamation:
Improving Post-Development Reusability," Proceedings of the

Eighth Annual National Conference on Ada Technology,
March 1990

lgasili, V. R., "Models and Metrics for Software Manage-

ment and Engineering,” ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software

Management and Engineering. New York: IEEE Computer Society
Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Meth-
odology," Proceedings of the First Pan-Pacific Computer Con-
ference, September 1985

7Basili, V. R., Maintenance = Reuse-Oriented Software
Development, University of Maryland, Technical Report
TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigm for the
Future, University of Maryland, Technical Report TR-2263,
June 1989

8Basili, V. R., "Viewing Maintenance as Reuse-Oriented
Software Development," IEEE Software, January 1990

lpasili, V. R., and J. Beane, "Can the Parr Curve Help With
Manpower Distribution and Resource Estimation Problems?,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

lpasili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL,"
Proceedings of the International Computer Software and Ap-

plications Conference, October 1985
4Basili, V. R., and D. Patnaik, A Study on Fault Prediction

and Reliabili A ssment in th EL Environment, University
of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation,” Communications of
the ACM, January 1984, vol. 27, no. 1

6109

lpasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"”
Pr in f the A I TRI ium/Workshop: al-

ity Metrics, March 1981

Basili, V. R., and J. Ramsey, Structural Coverage of Func-
tional Testing, University of Maryland, Technical Report
TR-1442, September 1984

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,"”

Proceedings of the IEEE/MITRE Expert Systems in Government
Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

ures for Software Development,"” Proceedings of the Workshop
n i iv w M iabili mplexi

and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V., and H. D. Rombach, "Tailoring the Software
Process to Project Goals and Environments," Proceedings of
the 9th International Conference on Software Engineering,
March 1987

5Basili, V., and H. D. Rombach, "T A M E: Tailoring an Ada
Measurement Environment,® Proceedings of the Joint Ada Con-
ference, March 1987

5Basili, V., and H. D. Rombach, "T A M E: Integrating
Measurement Into Software Environments,” University of
Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project:
Towards Improvement-Oriented Software Environments,"” IEEE

Transactions on Software Engineering, June 1988

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive
Framework for Reuse: A Reuse-Enabling Software Evolution
Environment, University of Maryland, Technical Report
TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive
Framework for R : Model-Ba Re Characterization
Schemes, University of Maryland, Technical Report TR-2446,
April 1990

2B3sili, V. R., R. W. Selby, Jr., and T. Phillips, "Metric
Analysis and Data Validation Across FORTRAN Projects,” IEEE

Transactions on Software Engineering, November 1983

6109

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use

of an Environment's Characteristic Software Metric Set,"
Proceedings of the Eighth International Conference on Soft-
ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effective-

ness of Software Testing Strategies, University of Maryland,
Technical Report TR-1501, May 1985

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of
a Software Data Collection and Analysis Methodology," Pro-

ceedings of the NATO Advanced Study Institute, August 1985

4asili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-
perimentation in Software Engineering," IEEE Transactions on

Software Engineering, July 1986

5Basili, V. and R. Selby, Jr., "Comparing the Effective-
ness of Software Testing Strategies," IEEE Transactions on

Software Engineering, December 1987

2Basili, V. R., and D. M. Weiss, A Methodol for 11 in

Valid Software Engineering Data, University of Maryland,
Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data,* IEEE Transactions on

Software Engineering, November 1984

lBasili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedings of the Fif-

nth Annual nferen on Computer Personnel R arch,
August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

lpasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second Soft-

ware Life Cycle Management Workshop, August 1978

lpasili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,” Com-

puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-

tional Conference on Software Engineering. New York: IEEE
Computer Society Press, 1978

6109

S5Brophy, C., W. Agresti, and V. Basili, "Lessons Learned
in Use of Ada-Oriented Design Methods," Proceedings of the

Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili,
"l,essons Learned in the Implementation Phase of a Large Ada

Project,” Proceedings of the Washington Ada Technical Con-
ference, March 1988

2card, D. N., "Early Estimation of Resource Expenditures and
Program Size," Computer Sciences Corporation, Technical Memo-
randum, June 1982

2card, D. N., "Comparison of Regression Modeling Techniques
for Resource Estimation," Computer Sciences Corporation,
Technical Memorandum, November 1982

3card, D. N., "A Software Technology Evaluation Program,"”
Annaj o XVIII ngr Nacional Informatica,
October 1985

Scard, D., and W. Agresti, "Resolving the Software Science

Anomaly,” The Journal of Systems and Software, 1987

6card, D. N., and W. Agresti, "Measuring Software Design

Complexity," The Journal of Systems and Software, June 1988

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan,
“A Software Engineering View of Flight Dynamics Analysis
System," Parts I and II, Computer Sciences Corporation,
Technical Memorandum, February 1984

4card, D. N., V. E. Church, and W. W. Agresti, "An Empirical
Study of Software Design Practices," IEEE Transactions on
Software Engineering, February 1986

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteris-
tics of FORTRAN Modules,® Computer Sciences Corporation,
Technical Memorandum, June 1984

5Card, D., F. McGarry, and G. Page, "Evaluating Software
Engineering Technologies," IEEE Transactions on Software
Engineering, July 1987

3card, D. N., G. T. Page, and F. E. McGarry, “"Criteria for
Software Modularization,” Proceedings of the Eighth Interna-

tional Conference on Software Engineering. New York: IEEE
Computer Society Press, 1985

6109

lchen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To

Evaluate Software Engineering Methodologies," Proceedings of
the Fifth International Conference on Software Engineering.

New York: IEEE Computer Society Press, 1981

4church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan,
"An Approach for Assessing Software Prototypes," ACM Software

Engineering Notes, July 1986

2poerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables,” Proceedings of the
Seventh International Computer Software and Applications
Conference. New York: IEEE Computer Society Press, 1983

5poubleday, D., ASAP: An Ada Static Source Code Analyzer
Program, University of Maryland, Technical Report TR-1895,
August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implemen-
tation of a Large Ada Project," Proceedings of the 1988
Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for
NAVPAK, Higher Order Software, Inc., TR-9, September 1977

(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, Char rizing R rce Data:
A Model for Logical Association of Software Data, University
of Maryland, Technical Report TR-1848, May 1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Re-
source Data Model," Proceedings of the Tenth International
Conference on Software Engineering, April 1988

5Mark, L., and H. D. Rombach, A M Inform n B for
Software Engineering, University of Maryland, Technical Re-
port TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software
Engineering Information Bases From Software Process and Prod-
uct Specifications," Proceedings of the 22nd Annual Hawaii
International Conference on System Sciences, January 1989

5McGarry, F., and W. Agresti, "Measuring Ada for Software
Development in the Software Engineering Laboratory (SEL),"
Pr din f the 21 Annual Hawaii International n-

ference on System Sciences, January 1988

TMcGarry, F., L. Esker, and K. Quimby, "Evolution of Ada
Technology in a Production Software Environment," Proceedings
of the Sixth Washington Ada Symposium (WADAS), June 1989

B-11
6109

3McGarry, F. E., J. Valett, and D. Hall, “"Measuring the
Impact of Computer Resource Qua11ty on the Software Develop-
ment Process and Product,” Pr in waiian In

national Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA

Software Research Technology Workshop (Proceedings), March
1980

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perlence With Independent Verification and Validation,"
Pr in f the Eighth International mputer Software

and Applications Conference, November 1984

5Ramsey, C., and V. R. Basili, An Evaluation of Expert Sys-
ftwar ngineering M ment, University of

Maryland, Technical Report TR-1708, September 1986

3rRamsey, J., and V. R. .Basili, "Analyzing the Test Process

U51ng Structural Coverage,” P;ggegd; as gf thg Eighth Inter-
national nferen n ware Engineerin New York:

IEEE Computer Society Press, 1985

SRombach, H. D., "A Controlled Experiment on the Impact of
Software Structure on Maintainability,"” IEEE Tran ions on

Software Engineering, March 1987

8Rombach, H. D., "Design Measurement: Some Lessons Learned,"
IEEE Software, March 1990

6rRombach, H. D., and V. R. Basili, "Quantitative Assessment
of Maintenance: An Industrial Case Study,"” Proceedings From
the Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Prod-
uct Specifications: A Basis for Generating Customized SE
Information Bases," Proceedings of the 22nd Annual Hawaii
International Conference on System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measure-

m Ba Maintenan Improvement Pr m: L Learned
in the SEL, University of Maryland, Technical Report
TR-2252, May 1989

5Seidewitz, E., "General Object-Oriented Software Develop-
ment: Background and Experience," Pr ggggg1ng§ of the 21st

Hawaii International Conference on System Sciences, January
1988

6Seidewitz, E., "General Object-Oriented Software Develop-
ment with Ada: A Life Cycle Approach,” Proceedings of the
CASE Technology Conference, April 1988

B-12
6109

6seidewitz, E., "Object-Oriented Programming in Smalltalk
and Ada," Proceedings of the 1987 Conference on Object-
Oriented Programming Systems, Langquages, and Applications,
October 1987

4geidewitz, E., and M. Stark, "Towards a General Object-
Oriented Software Development Methodology," Proceedings of
the First International Symposium on Ada for the NASA Space

Station, June 1986

8stark, M., "On Designing Parametrized Systems Using Ada,"
Proceedings of the Seventh Washington Ada Symposium,

June 1990

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize

Verbatim Software Reuse," Proceedings of TRI-Ada 1989,
October 1989

Stark, M., and E. Seidewitz, "Towards a General Object-
Oriented Ada Lifecycle," Proceedings of the Joint Ada Con-
ference, March 1987

8Straub, P. A., and M. Zelkowitz, "PUC: A Functional
Specification Language for Ada," Proceedings of the Tenth

International Conference of the Chilean Computer Science
Society, July 1990

7Sunazuka, T., and V. R. Basili, Integrating Automa Sup-
port for a Software Management Cycle Into the TAME System,
University of Maryland, Technical Report TR-2289, July 1989

Turner, C., and G. Caron, A mparison of RADC and NASA/SEL

Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

S5valett, J., and F. McGarry, "A Summary of Software Measure-
ment Experiences in the Software Engineering Laboratory, "
Proceedings of the 21st Annual Hawaii International Confer-

ence on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-
velopment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory,"” IEEE Transactions on Software
Engineering, February 1985

6109

Swu, L., V. Basili, and K. Reed, "A Structure Coverage Tool

for Ada Software Systems,” Proceedings of the Joint Ada Con-
ference, March 1987

lgelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects," Proceedings of the Twelfth Conference on

n £ i n m r ience. New York:
IEEE Computer Society Press, 1979

27elkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations

for Computer and Information Science (Proceedings),
November 1982

6zelkowitz, M. V., "The Effectiveness of Software Proto-
typing: A Case Study," Proceedings of the 26th Annual Tech-

nical Symposium of the Washington, D. C., Chapter of the ACM,
June 1987

6zZelkowitz, M. V., "Resource Utilization During Software

Development,” Journal of Systems and Software, 1988

8zelkowitz, M. V., "Evolution Towards Specifications Envi-
ronment: Experiences With Syntax Editors," Information and
Software Technology, April 1990

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of a
Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

NOTES:

lThis article also appears in SEL-82-004, Collected Soft-
ware Engineering Papers: Volume I, July 1982,

27his article also appears in SEL-83-003, Collected Soft-
Engi rin rs: Volume II, November 1983.

3This article also appears in SEL-85-003, 11 ft-
ware Engineering Papers: Volume III, November 1985.

4This article also appears in SEL-86-004, Collected Soft-
ware Engineering Papers: Volume IV, November 1986.

S5This article also appears in SEL-87-009, Collected Soft-
ware Engineering Papers: Volume V, November 1987.

6This article also appears in SEL-88-002, Collected Soft-
ware Engineering Papers: Volume VI, November 1988.

6109

7This article also appears in SEL-89-006, Collected Soft-
ware Engineering Papers: Volume VII, November 1989.

8This article also appears in SEL-90-005, Collected Soft-
ware Engineering Papers: Volume VIII, November 1990.

6109

